CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id ecaade2020_120
id ecaade2020_120
authors Ishikawa, Daichi, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title A Mixed Reality Coordinate System for Multiple HMD Users Manipulating Real-time Point Cloud Objects - Towards virtual and interactive 3D synchronous sharing of physical objects in teleconference during design study
doi https://doi.org/10.52842/conf.ecaade.2020.1.197
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 197-206
summary Teleconferences without travel costs are useful for building a consensus in design. However, conventional teleconferencing using computer displays and web cameras is well known to have performance problems due to the lack of co-presence feeling with remote participants and the difficulty in sharing three dimensional (3D) information intuitively. This research proposes a method to share the mixed reality (MR) coordinate system for multiple head-mounted display (HMD) users manipulating real-time point cloud objects for the virtual and interactive 3D synchronous sharing in teleconferences. In our proposed method, the reference point of the virtual world coordinate system called world anchor and local coordinates of segmented point cloud objects in real-time are shared among HMDs via a server PC to share the same MR coordinate system. Using this method, the result of moving and rotating manipulation using hand gestures for segmented point cloud objects by an HMD user are reflected in the other HMD users. We developed a prototype system and evaluated the performance of the system when multiple users used this system. Future works include adapting this system to multiple RGB-D cameras and the internet environment.
keywords Mixed reality coordinate system; Real-time point clouds; Multiple User Interaction; Teleconference; 3D Synchronous Physical Object Sharing
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2020_188
id caadria2020_188
authors Suzuki, Takaharu, Ikeda, Hikaru, Takeuchi, Issei, Matsunaga, Fumiya, Sumitomo, Eri and Ikeda, Yasushi
year 2020
title Holonavi - A study on User Interface for Assembly Guidance System with Mixed Reality in a Timber Craft of Architecture
doi https://doi.org/10.52842/conf.caadria.2020.1.691
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 691-700
summary This paper introduces ideas to use Mixed Reality (MR) technologies in craftsman's work of architecture.One of the backgrounds of this study is emerging technology of Mixed Reality becoming much easier to use recently with new devices such as Microsoft Hololens. Among many possible applications of this technique in architectural work, we particularly choose Japanese traditional timber joinery 'Kumiki' as a model case of complicated architectural work.We found that people need a certain sense of 3D recognition and knowledge about right order of assemble. That is what we can suggest for users with our MR guidance system named 'Holonavi' which can show appropriate information in 3D vision in real time. The aim of our research is to find useful knowledge about effective ways and sufficient information to guide users. As a conclusion, we found that guidance with MR technology gives users to have a recognition more effectively for take of right action when they are moving their viewpoint around the object and when they located in the range of reachable distance to the objects. It is the first achievement for use of 'Holonavi' to let people feel more fun to craft something by their hands aided by computer.
keywords Craftsman’s work; Mixed Reality; Digital Construction; Augmented Reality; Hololens
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia20_120
id acadia20_120
authors Barsan-Pipu, Claudiu; Sleiman, Nathalie; Moldovan, Theodor
year 2020
title Affective Computing for Generating Virtual Procedural Environments Using Game Technologies
doi https://doi.org/10.52842/conf.acadia.2020.2.120
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 120-129.
summary Architects have long sought to create spaces that can relate to or even induce specific emotional conditions in their users, such as states of relaxation or engagement. Dynamic or calming qualities were given to these spaces by controlling form, perspective, lighting, color, and materiality. The actual impact of these complex design decisions has been challenging to assess, from both quantitative and qualitative standpoints, because neural empathic responses, defined in this paper by feature indexes (FIs) and mind indexes (MIs), are highly subjective experiences. Recent advances in the fields of virtual procedural environments (VPEs) and virtual reality (VR), supported by powerful game engine (GE) technologies, provide computational designers with a new set of design instruments that, when combined with brain-computing interfacing (BCI) and eye-tracking (E-T) hardware, can be used to assess complex empathic reactions. As the COVID-19 health crisis showed, virtual social interaction becomes increasingly relevant, and the social catalytic potential of VPEs can open new design possibilities. The research presented in this paper introduces the cyber-physical design of such an affective computing system. It focuses on how relevant empathic data can be acquired in real time by exposing subjects within a dynamic VR-based VPE and assessing their emotional responses while controlling the actual generative parameters via a live feedback loop. A combination of VR, BCI, and E-T solutions integrated within a GE is proposed and discussed. By using a VPE inside a BCI system that can be accurately correlated with E-T, this paper proposes to identify potential morphological and lighting factors that either alone or combined can have an empathic effect expressed by the relevant responses of the MIs.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_412
id caadria2020_412
authors Capunaman, Ozguc Bertug
year 2020
title CAM as a Tool for Creative Expression - Informing Digital Fabrication through Human Interaction
doi https://doi.org/10.52842/conf.caadria.2020.1.243
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 243-252
summary Contemporary digital design and fabrication tools often present deterministic and pre-programmed workflows. This limits the potential for developing a deeper understanding of materials within the process. This paper presents an interactive and adaptive design-fabrication workflow where the user can actively take turns in the fabrication process. The proposed experimental setup utilizes paste extrusion additive manufacturing in tandem with real-time control of an industrial robotic arm. By incorporating a computer-vision based feedback loop, it captures momentary changes in the fabricated artifact introduced by the users to inform the digital representation. Using the updated digital representation, the proposed system can offer simple design hypotheses for the user to evaluate and adapt future toolpaths accordingly. This paper presents the development of the experimental setup and delineates critical concepts and their motivation.
keywords Computer-Aided Design (CAD) and Manufacturing (CAM); Human Computer Interaction; 3D Printing; Interactive Digital Fabrication; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_107
id ecaade2020_107
authors Hashimoto, Jason and Park, Hyoung-June
year 2020
title Dance with Shadows - Capturing tacit knowledge with smart device augmented reality (SDAR)
doi https://doi.org/10.52842/conf.ecaade.2020.2.165
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 165-172
summary Tacit knowledge has been notified with its involvement in the creative and innovative process of design. However, it has been an elusive subject due to its difficulty to be articulated, recorded, and communicated. Augmented Reality (AR) is introduced as an affordable, accessible, and collaborative way to revisit tacit knowledge in the design process. In this paper, a computational design approach with Smart Device Augmented Reality (SDAR) is proposed for a real-time fenestration design in a targeted room. In comparison to standard methods of showcasing daylighting metrics, the use of Smart Device Augmented Reality (SDAR) is an alternative method as it delivers a dynamic experience by combining both the real and digital environments, enabling the visualization of the design in its intended site context with real-time feedback. The implementation of the proposed approach is explained and the design process with SDAR is also demonstrated in this paper.
keywords tacit knowledge; augmented reality; simulation; real-time feedback
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2020_161
id caadria2020_161
authors Kido, Daiki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Mobile Mixed Reality for Environmental Design Using Real-Time Semantic Segmentation and Video Communication - Dynamic Occlusion Handling and Green View Index Estimation
doi https://doi.org/10.52842/conf.caadria.2020.1.681
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 681-690
summary Mixed reality (MR), that blends the real and virtual worlds, attracted attention for consensus-building among stakeholders in environmental design with the visualization of planned landscape onsite. One of the technical challenges in MR is the occlusion problem which occurs when virtual objects hide physical objects that should be rendered in front of virtual objects. This problem may cause inappropriate simulation. And the visual environmental assessment of present and proposed landscape with MR can be effective for the evidence-based design, such as urban greenery. Thus, this study aims to develop a MR-based environmental assessment system with dynamic occlusion handling and green view index estimation using semantic segmentation based on deep learning. This system was designed for the use on a mobile device with video communication over the Internet to implement a real-time semantic segmentation whose computational cost is high. The applicability of the developed system is shown through case studies.
keywords Mixed Reality (MR); Environmental Design; Dynamic Occlusion Handling; Semantic Segmentation; Green View Index
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2020_030
id ecaade2020_030
authors Song, Yang
year 2020
title BloomShell - Augmented Reality for the assembly and real-time modification of complex curved structure
doi https://doi.org/10.52842/conf.ecaade.2020.1.345
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 345-354
summary Augmented Reality (AR) as a new technical tool has developed rapidly in the last few years and has now the potential of bridging the gap between holographic drawings and the real world. This paper addresses whether AR can guide unskilled labour on complex structure assembly and fabrication process. It contains three experiments developed with AR. The research aims to prove that with intuitive holographic instructions, AR helps to reduce the time spent in comparing 2D drawings to the real site during the assembly process, and therefore offers possibilities to improve the construction efficiency significantly. The research also paves the way for shell structures, considering the latest technology such as AR and AI, and gives emphasis on the communication between computer and human during the fabrication process through the physical model. It is an exploration of how people might change their mind or decisions can be changed in a real-time manner harmoniously using AI through AR.
keywords Augmented Reality; complex curved structure assembly; real-time modification; holographic instruction; HoloLens; Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2021_067
id ecaade2021_067
authors Weissenböck, Renate
year 2021
title Augmented Quarantine - An experiment in online teaching using augmented reality for customized design interventions
doi https://doi.org/10.52842/conf.ecaade.2021.2.095
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 95-104
summary This paper presents experimental research about using Augmented Reality (AR) for interactive design processes, exploring a spatial "live" design method taking place in an overlay of real space and digital models. It discusses the processes and outcomes of a seminar undertaken at Graz University of Technology in winter term 2020/2021. Due to the Covid-19 pandemic, the course was taught online, and conceptualized to allow students the biggest possible learning experience during the lockdown. Ensuring accessibility to all participants, the seminar was based on the use of ubiquitous devices. The implementation of newly developed software, such as "Fologram", enabled the students to use AR systems at home with their personal computers and smartphones. The task of the course was to design customized interventions for the students' own domestic spaces, reacting to changing conditions and needs during the lockdown. The employed workflow was driven by an instant connection between 3D-modeling (Rhinoceros3D), parametric design (Grasshopper) and holographic immersion (Fologram).
keywords augmented reality; remote collaboration; interactive design; customization; online teaching
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2020_499
id ecaade2020_499
authors Ashour, Ziad and Yan, Wei
year 2020
title BIM-Powered Augmented Reality for Advancing Human-Building Interaction
doi https://doi.org/10.52842/conf.ecaade.2020.1.169
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 169-178
summary The shift from computer-aided design (CAD) to building information modeling (BIM) has made the adoption of augmented reality (AR) promising in the field of architecture, engineering and construction. Despite the potential of AR in this field, the industry and professionals have still not fully adopted it due to registration and tracking limitations and visual occlusions in dynamic environments. We propose our first prototype (BIMxAR), which utilizes existing buildings' semantically rich BIM models and contextually aligns geometrical and non-geometrical information with the physical buildings. The proposed prototype aims to solve registration and tracking issues in dynamic environments by utilizing tracking and motion sensors already available in many mobile phones and tablets. The experiment results indicate that the system can support BIM and physical building registration in outdoor and part of indoor environments, but cannot maintain accurate alignment indoor when relying only on a device's motion sensors. Therefore, additional computer vision and AI (deep learning) functions need to be integrated into the system to enhance AR model registration in the future.
keywords Augmented Reality; BIM; BIM-enabled AR; GPS; Human-Building Interactions; Education
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_128
id caadria2020_128
authors Chen, Zi-Ru
year 2020
title The Guidance System of Gamification and Augmented Reality in a Museum Space
doi https://doi.org/10.52842/conf.caadria.2020.1.671
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 671-680
summary Gamification is the application of game-oriented design approaches or game-inspired mechanics to otherwise non-game contexts. Mobile guiding system is the design process of information interactions. It is the integration of information design, interaction design, and sensorial design. The e-learning system of mobile guide is able to be loaded gamification concepts and let mobile learning interestingly, diversely, and validly. The problem of the research was if we combined the concept of gamification design into museum guide services with augmented reality for non-commercial purposes, it also provided the same benefits to the promotion of museum learning and knowledge, integrating mobile devices as navigation media. It would improve more users to participate in a museum and use the guide system actively, and then arise their interest and achievement. The result was to establish a preliminary model for developing a museum mobile guide system of gamification design and augmented reality.
keywords Gamification; Museum Learning; Multimedia Guided System; Augmented Reality
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2020_390
id ecaade2020_390
authors Ahmadzadeh Bazzaz, Siamak, Fioravanti, Antonio and Coraglia, Ugo Maria
year 2020
title Depth and Distance Perceptions within Virtual Reality Environments - A Comparison between HMDs and CAVEs in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2020.1.375
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 375-382
summary The Perceptions of Depth and Distance are considered as two of the most important factors in Virtual Reality Environments, as these environments inevitability impact the perception of the virtual content compared with the one of real world. Many studies on depth and distance perceptions in a virtual environment exist. Most of them were conducted using Head-Mounted Displays (HMDs) and less with large screen displays such as those of Cave Automatic Virtual Environments (CAVEs). In this paper, we make a comparison between the different aspects of perception in the architectural environment between CAVE systems and HMD. This paper clarifies the Virtual Object as an entity in a VE and also the pros and cons of using CAVEs and HMDs are explained. Eventually, just a first survey of the planned case study of the artificial port of the Trajan emperor near Fiumicino has been done as for COVID-19 an on-field experimentation could not have been performed.
keywords Visual Perception; Depth and Distance Perception; Virtual Reality; HMD; CAVE; Trajan’s port
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_141
id caadria2020_141
authors Dezen-Kempter, Eloisa, Mezencio, Davi Lopes, Miranda, Erica De Matos, De Sá, Danilo Pico and Dias, Ulisses
year 2020
title Towards a Digital Twin for Heritage Interpretation - from HBIM to AR visualization
doi https://doi.org/10.52842/conf.caadria.2020.2.183
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 183-191
summary Data-driven Building Information Modelling (BIM) technology has brought new tools to efficiently deal with the tension between the real and the virtual environments in the field of Architecture, Engineering, Construction, and Operation (AECO). For historic assets, BIM represents a paradigm shift, enabling better decision-making about preventive maintenance, heritage management, and interpretation. The potential application of the Historic-BIM is creating a digital twin of the asset. This paper deals with the concept of a virtual environment for the consolidation and dissemination of heritage information. Here we show the process of creating interactive virtual environments for the Pampulha Modern Ensemble designed by Oscar Niemeyer in the 1940s, and the workflow to their dissemination in an AR visualization APP. Our results demonstrate the APP feasibility to the Pampulha's building interpretation.
keywords Augmented Reality (AR); Historic Building Information Modelling (HBIM); Heritage Interpretation; Modern Architecture
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia20_182p
id acadia20_182p
authors Grasser, Alexander; Parger, Alexandra; Hirschberg, Urs
year 2020
title Realtime Architecture Platform: CollabWood
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 182-187
summary This project presents a Realtime Architecture Platform applied in a telepresence design studio to design and construct the CollabWood prototype. The platform, developed by the authors, enables an open workflow to collaborate and design in unity. It provides a persistent online environment for real-time architectural production. The work method is based on the concept of collaborative objects and distributed designers. These collaborative objects are the shared content: discrete parts, prefabs, or blocks that enable interaction, communication, and collaboration between its users and owners. The distributed designers can contribute by instantiating these collaborative objects. Users placing an object react to the local neighboring conditions and therefore add their embodied design decision to the global architecture. The users get immersed in digital proximity by communicating through the integrated chat or digital calls, discussing strategies, debating design intentions, analyzing the built structure, and scanning for improvements. This pervasive collaboration lays the foundation for a democratization of the design process. As a proof of concept, this method was implemented with 20 students in a telepresence design studio. The participants embraced the real-time workflow and applied the collaborative tool throughout the semester from different locations and time zones. Using the platform to design the CollabWood prototype in real-time collaboratively was realized as a 1:1 project with local, accessible material and AR technology for assembly. The global pandemic accelerated the importance of collaboration. Realtime Architecture Platform’s response of providing an accessible common platform for real-time interaction, design, and collaboration can be regarded as a first step towards how we might work together in the future.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2020_156
id ecaade2020_156
authors Hemmerling, Marco and Maris, Simon
year 2020
title INTERCOM - A platform for collaborative design processes
doi https://doi.org/10.52842/conf.ecaade.2020.2.173
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 173-180
summary The INTERCOM project propounds a cloud-based collaboration platform for digital planning processes in architecture. The concept is based on an openBIM approach and ensures open access for all partners involved. At its core it provides IFC-based and model-related online tools for planning, communication and collaboration. The interaction with the model and the exchange with other project partners takes place in real-time via a model-related chat and BCF exports. In addition, the integration of e-learning modules (e.g. video tutorials, wikis, project documents) encourages problem solving through further education. Especially the integration of communication and collaboration tools is supposed to enhance the decision making throughout the design process and become a key factor for a successful and coordinated BIM process. Primarily INTERCOM has been developed as a prototype for teaching BIM in interdisciplinary teams. Subsequently, the application can also be adopted for professional practice. The paper evaluates previous experiences from BIM cloud teaching and discusses the conception and development of the proposed collaborative platform.
keywords architecture curriculum; didactics; building information modeling (BIM); collaborative design process; common data environment (CDE)
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2020_222
id ecaade2020_222
authors Ikeno, Kazunosuke, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Automatic Generation of Horizontal Building Mask Images by Using a 3D Model with Aerial Photographs for Deep Learning
doi https://doi.org/10.52842/conf.ecaade.2020.2.271
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 271-278
summary Information extracted from aerial photographs is widely used in urban planning and design. An effective method for detecting buildings in aerial photographs is to use deep learning for understanding the current state of a target region. However, the building mask images used to train the deep learning model are manually generated in many cases. To solve this challenge, a method has been proposed for automatically generating mask images by using virtual reality 3D models for deep learning. Because normal virtual models do not have the realism of a photograph, it is difficult to obtain highly accurate detection results in the real world even if the images are used for deep learning training. Therefore, the objective of this research is to propose a method for automatically generating building mask images by using 3D models with textured aerial photographs for deep learning. The model trained on datasets generated by the proposed method could detect buildings in aerial photographs with an accuracy of IoU = 0.622. Work left for the future includes changing the size and type of mask images, training the model, and evaluating the accuracy of the trained model.
keywords Urban planning and design; Deep learning; Semantic segmentation; Mask image; Training data; Automatic design
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia20_84
id acadia20_84
authors Kirova, Nikol; Markopoulou, Areti
year 2020
title Pedestrian Flow: Monitoring and Prediction
doi https://doi.org/10.52842/conf.acadia.2020.1.084
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 84-93.
summary The worldwide lockdowns during the first wave of the COVID-19 pandemic had an immense effect on the public space. The events brought up an opportunity to redesign mobility plans, streets, and sidewalks, making cities more resilient and adaptable. This paper builds on previous research of the authors that focused on the development of a graphene-based sensing material system applied to a smart pavement and utilized to obtain pedestrian spatiotemporal data. The necessary steps for gradual integration of the material system within the urban fabric are introduced as milestones toward predictive modeling and dynamic mobility reconfiguration. Based on the capacity of the smart pavement, the current research presents how data acquired through an agent-based pedestrian simulation is used to gain insight into mobility patterns. A range of maps representing pedestrian density, flow, and distancing are generated to visualize the simulated behavioral patterns. The methodology is used to identify areas with high density and, thus, high risk of transmitting airborne diseases. The insights gained are used to identify streets where additional space for pedestrians is needed to allow safe use of the public space. It is proposed that this is done by creating a dynamic mobility plan where temporal pedestrianization takes place at certain times of the day with minimal disruption of road traffic. Although this paper focuses mainly on the agent-based pedestrian simulation, the method can be used with real-time data acquired by the sensing material system for informed decision-making following otherwise-unpredictable pedestrian behavior. Finally, the simulated data is used within a predictive modeling framework to identify further steps for each agent; this is used as a proof-of-concept through which more insights can be gained with additional exploration.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2023_218
id sigradi2023_218
authors Leitao de Souza, Thiago, Gaspar Vereza, Carolina, Biz Medina, Jonatham, de Oliveira Milhm, Julio, Boner da Silva, Gabriel, Apostolo dos Santos Freire Salvador, Lucas, Ferreira Santos, Victor, Pousas Puig, Joao Gabriel and Henriques Monzatto de Mattos, Felipe
year 2023
title Game Engines in the Historical Landscape: Interchangeable Layers of the City in Victor Meirelles and Henri Langerock's Panorama of Rio de Janeiro
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 865–874
summary This work is part of an ongoing research entitled “The 360- immersive: investigation, representation and digital immersion of Rio de Janeiro city during 19th and 20th centuries”, which aims at the theoretical, conceptual and instrumental analysis and discussion of the Panorama of Rio de Janeiro by Victor Meirelles and Henri Langerock in the Unity Game Engine. It presents an historical-interpretive method with application in Digital Graphics. To this end, it was considered necessary: to recreate the 360- immersive experience of the Panorama in real time; its context experience during the historical layers of 1885, 1915, 2020, and a fourth combination between previous layers, based in specific geometric models; programming in C# the movement of the player-observer, scenes, interaction with objects and the player's own navigation through the game menu.
keywords Virtual Reality, City History, Immersive Experience in 360°, Panorama of Rio de Janeiro, Game Engines.
series SIGraDi
email
last changed 2024/03/08 14:07

_id ecaade2020_333
id ecaade2020_333
authors Lescop, Laurent and Suner, Bruno
year 2020
title Designing Intradiegetic and Extradiegetic Spaces for Virtual Reality
doi https://doi.org/10.52842/conf.ecaade.2020.2.545
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 545-554
summary Fictions for virtual reality are mostly conceived either in an entirely virtual environment or in a real environment with very little transformation. It is infinitely rare to find examples of sets designed and built specifically for a 360° experience. Building, rather than remaining purely virtual, raises complex questions about the organization of a "space to play" and therefore how to produce a narrative for immersion and create a 360° film grammar.We thus have created a first 360° set for the famous director Marc Caro, for whom the question of off-screen raised a very complex technical problem regarding lighting, visual effects, staging, blocking and acting. In this contribution we will show how this was solved and why the definition of a 360° narrative grammar is crucial. These are important intricacies that place the user-spectator in the optimal conditions to appreciate the experience.
keywords 360° cinema; Virtual Reality; Methodology and pedagogy; narrative grammar; Set construction; Isovist 3D
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia20_136p
id acadia20_136p
authors López Lobato, Déborah; Charbel, Hadin
year 2020
title Foll(i)cle
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 136-141
summary In the early months of 2019, air pollution in Bangkok reached a record high, bringing national and international attention to the air quality in the South East Asian cosmopolitan. Although applications such as real-time pollution maps provide an environmental reading from the exterior, such information reveals the ‘here and now,’ where its record is inevitably lost through the ‘refreshing’ process of the live update and does not take increment and accumulation as factors to consider. The project was conceived around understanding the human body as precisely that medium that resists classification as either an interior or exterior environment that inherently performs as an impressionable record of its surroundings. Can a city’s toxicity be read through its living constituents? Can the living bodies that dwell, navigate, breathe, and process habitable environments be accessed? Can architecture retain a degree of independence while also performing as a beacon for the collective? Along this line of questioning, it was found that human hair can be transformed from a material that is effortlessly and continuously grown, cut, stylized, and discarded, and instead be intercepted and used in the production of public information gathering. Foll(i)cle is a collective being made of discarded human hair. Performing as a parliament for collectivity embedded with a protocol; the hairy pavilion invites the public in and presents them with a device at the center that hosts all the necessary equipment and information for anonymously and voluntarily providing hair samples for heavy metal analysis, the data of which is used in making a publically accessible toxi-cartography. Although humans are the primary subject for this study, the results suggest that extending the methodology to non-humans could prove useful in reading urban toxicity through various life forms.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2020_254
id caadria2020_254
authors Pei, Wanyu, LO, TianTian and Guo, Xiangmin
year 2020
title A Biofeedback Process: Detecting Architectural Space with the Integration of Emotion Recognition and Eye-tracking Technology
doi https://doi.org/10.52842/conf.caadria.2020.2.263
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 263-272
summary This paper coincides with the conference theme that people have gradually become a vital force influencing the environmental system. In the future, it is necessary to study the influence of not only the built environment on people but also people's feedback on environmental design. This study explores the ‎processes of interactive design using both emotion recognition and eye-tracking of users. By putting on wearable devices to roam and perceive in a virtual reality space, the physiological data of the users are collected in real-time and used to analyze their emotional responses and visual attention to the spaces. This method will provide an auxiliary way for non-architectural professional users to participate in architectural space design. At present, there is a lack of research on the comprehensive application of eye movement knowledge and emotional feedback in architectural space design. This integration will help professional designers to optimize the design of architectural space. For this paper, we review existing research and proposing an interactive design workflow that integrates eye tracking and emotion recognition. This workflow will help with the next stage of research to understand the design of a new International School of Design building.
keywords Perception detection; Architectural space environment; Interactive design; Virtual reality
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_963341 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002