CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id ecaade2020_299
id ecaade2020_299
authors Colmo, Claudia and Ayres, Phil
year 2020
title 3d Printed Bio-hybrid Structures - Investigating the architectural potentials of mycoremediation
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 573-582
doi https://doi.org/10.52842/conf.ecaade.2020.1.573
summary In this paper, we present a speculative design concept for a mycelium-based living bio-hybrid architectural system. The system combines inoculated lignocellulosic substrates with soil-based 3d printed structures that function as growth scaffolds, material boundaries and spatial organisers. The primary objective of the system is to exploit mycelium as a living remediator of contaminated sites, in the form of architectural proposition. The feasibility of this concept is investigated in two ways: 1) material composition development and process control parameters for soil-based 3d printing, 2) the synthesis of printed prototypes to determine geometric and environmental parameters for promoting colonisation of mycelium and supporting its role as both structural binder and 'Mycorestoration' agent. This work is contextualised with reference to the state-of-the-art in order to identify the research gap and articulate the contribution of a mycelium-based remediating architecture. The merits and limits of the experimental results are reflected upon and trajectories of further investigation outlined.
keywords mycelium; mycorestoration; soil contamination; 3d printing; bio-hybrid architecture; design based experimentation
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_037
id ecaade2020_037
authors Dortheimer, Jonathan, Neuman, Eran and Milo, Tova
year 2020
title A Novel Crowdsourcing-based Approach for Collaborative Architectural Design
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 155-164
doi https://doi.org/10.52842/conf.ecaade.2020.2.155
summary This paper provides an overview of "Architasker", a large-scale crowdsourcing approach, platform, and method that enables a collaborative professional architectural design process in collaboration with a community of stakeholders. The platform includes communicating complex architectural project requirements; solution space exploration using different micro-tasks like sketching, 2D and 3D CAD; design selection; and design review as an evolutionary process. The architectural crowdsourcing model underlying the platform is contextualized in the state-of-the-art research on creative crowdsourcing methods and is supported by relevant evidence from empirical experiments. Experimental results validate the effectiveness of the method to generate architectural artifacts by harnessing the skills, talents, and experience of architects and the opinions and values of the stakeholders.
keywords Crowdsourcing; Participatory Design; Human Computation; Creative Crowdsourcing; Co-Design; Collective Intelligence
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
doi https://doi.org/10.52842/conf.acadia.2020.1.340
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202321102
id ijac202321102
authors Özerol, Gizem; Semra Arslan Selçuk
year 2023
title Machine learning in the discipline of architecture: A review on the research trends between 2014 and 2020
source International Journal of Architectural Computing 2023, Vol. 21 - no. 1, pp. 23–41
summary Abstract Through the recent technological developments within the fourth industrial revolution, artificial intelligence (AI) studies have had a huge impact on various disciplines such as social sciences, information communication technologies (ICTs), architecture, engineering, and construction (AEC). Regarding decision-making and forecasting systems in particular, AI and machine learning (ML) technologies have provided an opportunity to improve the mutual relationships between machines and humans. When the connection between ML and architecture is considered, it is possible to claim that there is no parallel acceleration as in other disciplines. In this study, and considering the latest breakthroughs, we focus on revealing what ML and architecture have in common. Our focal point is to reveal common points by classifying and analyzing current literature through describing the potential of ML in architecture. Studies conducted using ML techniques and subsets of AI technologies were used in this paper, and the resulting data were interpreted using the bibliometric analysis method. In order to discuss the state-of-the-art research articles which have been published between 2014 and 2020, main subjects, subsets, and keywords were refined through the search engines. The statistical figures were demonstrated as huge datasets, and the results were clearly delineated through Sankey diagrams. Thanks to bibliometric analyses of the current literature of WOS (Web of Science), CUMINCAD (Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD, and CAAD futures), predictable data have been presented allowing recommendations for possible future studies for researchers.
keywords Artificial intelligence, machine learning, deep learning, architectural research, bibliometric analysis
series journal
last changed 2024/04/17 14:30

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2020_306
id caadria2020_306
authors Akizuki, Yuta, Bernhard, Mathias, Kakooee, Reza, Kladeftira, Marirena and Dillenburger, Benjamin
year 2020
title Generative Modelling with Design Constraints - Reinforcement Learning for Object Generation
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 445-454
doi https://doi.org/10.52842/conf.caadria.2020.1.445
summary Generative design has been explored to produce unprecedented geometries, nevertheless design constraints are, in most cases, second-graded in the computational process. In this paper, reinforcement learning is deployed in order to explore the potential of generative design satisfying design objectives. The aim is to overcome the three issues identified in the state of the art: topological inconsistency, less variations in style and unpredictability in design. The goal of this paper is to develop a machine learning framework, which works as an intellectual design interpreter capable of codifying an input geometry to form a new geometry. Experiments demonstrate that the proposed method can generate a family of tables of unique aesthetics, satisfying topological consistency under given constraints.
keywords generative design; computational design; data-driven design; reinforcement learning; machine learning
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2020_839
id sigradi2020_839
authors Braida, Frederico; Zancaneli, Mariana Alves; Gouvea, Isabela; Chagas, Icaro
year 2020
title Biomimicry: an approach from the CumInCAD database
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 839-846
summary This article addresses the theme of biomimetics in the context of the interaction between architecture, urbanism, design and digital technologies. The main aim is to present the state of the art of the research published in the SIGraDI congresses and congresses of the sister associations. The methodology adopted was systematic literature and bibliometric review. The ComInCAD database was chosen as the data collection source. In the end, the text reveals in which associations the theme of biomimetics is more explored, as well as the authors who are most influential in this field of knowledge.
keywords Architecture, Nature, Biomimetics, Literature Review, CumInCAD
series SIGraDi
email
last changed 2021/07/16 11:53

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id cdrf2019_36
id cdrf2019_36
authors Dan Luo, Joseph M. Gattas, and Poah Shiun Shawn Tan
year 2020
title Real-Time Defect Recognition and Optimized Decision Making for Structural Timber Jointing
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_4
summary Non-structural or out-of-grade timber framing material contains a large proportion of visual and natural defects. A common strategy to recover usable material from these timbers is the marking and removing of defects, with the generated intermediate lengths of clear wood then joined into a single piece of fulllength structural timber. This paper presents a novel workflow that uses machine learning based image recognition and a computational decision-making algorithm to enhance the automation and efficiency of current defect identification and rejoining processes. The proposed workflow allows the knowledge of worker to be translated into a classifier that automatically recognizes and removes areas of defects based on image capture. In addition, a real-time optimization algorithm in decision making is developed to assign a joining sequence of fragmented timber from a dynamic inventory, creating a single piece of targeted length with a significant reduction in material waste. In addition to an industrial application, this workflow also allows for future inventory-constrained customizable fabrication, for example in production of non-standard architectural components or adaptive reuse or defect-avoidance in out-of-grade timber construction.
series cdrf
email
last changed 2022/09/29 07:51

_id sigradi2020_924
id sigradi2020_924
authors Durango Gomez, Julián Fernando Leon; Giraldo Vásquez, Maria Isabel
year 2020
title Sustainable scenarios for and in university education: design of sustainable products
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 924-929
summary This paper proposes instruments from the sustainable development framework for the construction of a sustainable product design undergraduated program guide. The methodology used was mixed: surveys, both quantitative and qualitative, focus groups and semi-structured virtual interviews were carried out. Information on the state of the art was collected and later served as input for the construction of the guide. The results showed a concern about the lack of academic spaces to train with skills and conscience about the topic. Likewise, these allowed the construction of this guide, where knowledge that promotes more sustainable consumption and production could be imparted.
keywords Sustainable design, Curriculum, Undergraduated degree, Academic instruments
series SIGraDi
email
last changed 2021/07/16 11:53

_id acadia20_320
id acadia20_320
authors Fang, Zhihao; Wu, Yuning; Hassonjee, Ammar; Bidgoli, Ardavan; Cardoso-Llach PhD, Daniel
year 2020
title Towards a Distributed, Robotically Assisted Construction Framework
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 320-329.
doi https://doi.org/10.52842/conf.acadia.2020.1.320
summary In this paper we document progress towards an architectural framework for adaptive and distributed robotically assisted construction. Drawing from state-of-the-art reinforcement learning techniques, our framework allows for a variable number of robots to adaptively execute simple construction tasks. The paper describes the framework, demonstrates its potential through simulations of pick-and-place and spray-coating construction tasks conducted by a fleet of drones, and outlines a proof-of-concept experiment. With these elements the paper contributes to current research in architectural and construction robotics, particularly to efforts towards more adaptive and hybrid human-machine construction ecosystems. The code is available at: https://github.com/c0deLab/RAiC
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_9
id sigradi2020_9
authors Felipe, Bárbara L.; Nome, Carlos
year 2020
title Digital Fabrication Techniques: A systematic literature review
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 9-16
summary The materialization of architectural forms uses new processes aided by digital manufacturing techniques (FD). Five FD techniques stand out: sectioning (serial planes), tessellation, folding, contouring, and forming. This article's objective is to characterize the state of the art of these techniques, from 2009 to 2020 in national and international research bases. The Systematic Literature Review is used from three stages and nine protocol phases. The results indicate the techniques, methods, computer simulations, and applicability in more recurrent materials.
keywords Digital Fabrication techniques, Digital Fabrication, Algorithmic Architecture; Parametric Design.
series SIGraDi
email
last changed 2021/07/16 11:48

_id ijac202018401
id ijac202018401
authors Gabriela Celani
year 2020
title Shortcut to the Fourth Industrial Revolution: The case of Latin America
source International Journal of Architectural Computing vol. 18 - no. 4, 320–334
summary In the fields of architecture and urban design, there has always been a delay in the impact of industrial revolution technologies, and in the case of less industrialised countries, the delay has been even bigger. This article starts with a review of the history of computer-aided architectural design in Brazil and then describes the state of the field in some Latin American countries. Finally, we discuss the ‘ideal computer curriculum’ for architects in the Fourth Industrial Revolution.
keywords Fourth Industrial Revolution, Latin America, architectural practice, architectural education
series journal
email
last changed 2021/06/03 23:29

_id cdrf2019_159
id cdrf2019_159
authors Hang Zhang and Ye Huang
year 2020
title Machine Learning Aided 2D-3D Architectural Form Finding at High Resolution
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_15
summary In the past few years, more architects and engineers start thinking about the application of machine learning algorithms in the architectural design field such as building facades generation or floor plans generation, etc. However, due to the relatively slow development of 3D machine learning algorithms, 3D architecture form exploration through machine learning is still a difficult issue for architects. As a result, most of these applications are confined to the level of 2D. Based on the state-of-the-art 2D image generation algorithm, also the method of spatial sequence rules, this article proposes a brand-new strategy of encoding, decoding, and form generation between 2D drawings and 3D models, which we name 2D-3D Form Encoding WorkFlow. This method could provide some innovative design possibilities that generate the latent 3D forms between several different architectural styles. Benefited from the 2D network advantages and the image amplification network nested outside the benchmark network, we have significantly expanded the resolution of training results when compared with the existing form-finding algorithm and related achievements in recent years
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_051
id caadria2020_051
authors Homolja, Mitra, Maghool, Sayyed Amir Hossain and Schnabel, Marc Aurel
year 2020
title The Impact of Moving through the Built Environment on Emotional and Neurophysiological State - A Systematic Literature Review
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 641-650
doi https://doi.org/10.52842/conf.caadria.2020.1.641
summary Despite theoretical evidence about the capabilities of visual properties of space for manipulating inhabitants' emotions, a gap in knowledge exists for empirical studies in controlled environments. Interdisciplinary studies at the intersection of architecture, psychology, and neuroscience can provide robust guidelines and criteria for designers to engineer emotions. Due to the novelty of the field, the theoretical framework for such studies is not well established. Consequently, this paper presents a systematic literature review to find and synthesize recent relevant studies at this intersection. Based on these findings, we will investigate the impact of other visuo-spatial stimuli on emotions in a rigorous way. According to the theories of emotions, manipulation of emotions is linked to oscillations in physiological responses caused by exposure to sensory stimuli. Moreover, there is a consensus that human perception is action-oriented. Therefore, our review focuses on studies that employ biosensors as subjects move in physical or virtual environments.
keywords Neuroarchitecture; Brain Body Sensors; Virtual Reality; Physiological Response; Emotional Response
series CAADRIA
email
last changed 2022/06/07 07:50

_id artificial_intellicence2019_129
id artificial_intellicence2019_129
authors Hua Chai, Liming Zhang, and Philip F. Yuan
year 2020
title Advanced Timber Construction Platform Multi-Robot System for Timber Structure Design and Prefabrication
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_9
summary Robotic Timber Construction has been widely researched in the last decade with remarkable advancements. While existing robotic timber construction technologies were mostly developed for specific tasks, integrated platforms aiming for industrialization has become a new trend. Through the integration of timber machining center and advanced robotics, this research tries to develop an advanced timber construction platform with multi-robot system. The Timber Construction Platform is designed as a combination of three parts: multi-robot system, sensing system, and control system. While equipped with basic functions of machining centers that allows multi-scale multifunctional timber components’ prefabrication, the platform also served as an experimental facility for innovative robotic timber construction techniques, and a service platform that integrates timber structure design and construction through real-time information collection and feedback. Thereby, this platform has the potential to be directly integrated into the timber construction industry, and contributes to a mass-customized mode of timber structures design and construction.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id caadria2020_078
id caadria2020_078
authors Joyce, Gabriella and Pelosi, Antony
year 2020
title Robotic Connections for CLT Panels
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 403-412
doi https://doi.org/10.52842/conf.caadria.2020.2.403
summary In a climate where standard methods of construction are being challenged, developments in engineered timbers are allowing mass timber construction to be explored as a sustainable alternative to current building methods that can change the future of the built environment. Cross-laminated timber (CLT) is at the forefront of this evolution and, with the advancement in computational design and digital fabrication tools, there lies an opportunity to redefine standard construction. This project creates connections inspired by traditional Japanese joinery that have been adapted to be used for the panel construction of CLT structures. Using a combination of digital modelling and advanced digital fabrication, the project utilizes CLT offcuts as a primary connection material. The system not only reduces waste but also mitigates thermal bridging and lowers the number of connection points whilst increasing the ease of building and fabrication. Connection systems are designed and prototyped using a robotic arm and are then evaluated within the context of a building scale and considers largeâ€scale fabrication and onâ€site assembly whilst continuing to focus on the reduction of waste.
keywords Robotics; CLT; Connections; Waste; Timber
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_506
id acadia20_506
authors Khalilbeigi Khameneh, Arman; Mottaghi, Esmaeil; Ghazvinian, Ali; Kalantari, Saeede
year 2020
title Con-Create
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 506-515.
doi https://doi.org/10.52842/conf.acadia.2020.1.506
summary Net structures, because of their minimal material waste and intuitive aesthetics, are gaining more interest recently. There are various efforts to redesign the tensile- and compression-only structures, as the computational tools and novel materials have broadened the scope of geometries possible to construct. However, the fabrication process of these structures faces different challenges, especially for mass construction. Some of these challenges are related to the technology and equipment utilized for materializing these complicated forms and geometries. Working with concrete as a quickly forming material for these irregular forms seems promising. Nevertheless, using this material has difficulties, including the preparation of formworks and joints, material reinforcement, structural behavior in the fresh state, and the assembly procedure. This paper introduces a method based on computational design and geometrical solutions to address some of these challenges. The goal is to shift the complexity of construction from the high-tech equipment used in the fabrication stage to integrating design and fabrication through a hierarchical system made entirely by affordable 2D CNC laser cutters. The stages of developing the method and the process of designing and building an architectural size proof-of-concept prototype by the proposed method are discussed. The efficiency of the method has been shown by comparing the designed prototype with the Con-Create Pavilion.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_517
id ecaade2020_517
authors Lharchi, Ayoub, Ramsgaard Thomsen, Mette and Tamke, Martin
year 2020
title Connected Augmented Assembly - Cloud based Augmented Reality applications in architecture
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 179-186
doi https://doi.org/10.52842/conf.ecaade.2020.1.179
summary Current design practices rely on a set of computational tools to simulate and optimize the design in regards to questions concerning architecture, engineering, and construction. However, little progress has been made in tools related to the design and execution of a building assembly. This paper aims to present an integrated procedure that targets the assembly of complex structures. Two challenges are identified and addressed: first, the necessity of a connected design environment where multiple stakeholders can communicate, modify, and give feedback on the assembly sequence. Second, the instructions for the assembly of structures to untrained users. The suggested method is based on the Assembly Information Modeling framework, which provides a general approach to generate assembly information from CAD data and utilizes AEC cloud platforms as a base for communication and Augmented Reality devices as a Human Machine Interface. Ultimately, both cases are combined to constitute Connected Augmented Assembly, a bidirectional approach to assembly design, review, and execution.
keywords assembly sequence; augmented reality; assisted assembly; cloud aec; assembly information modeling
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_321417 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002