CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id caadria2020_141
id caadria2020_141
authors Dezen-Kempter, Eloisa, Mezencio, Davi Lopes, Miranda, Erica De Matos, De Sá, Danilo Pico and Dias, Ulisses
year 2020
title Towards a Digital Twin for Heritage Interpretation - from HBIM to AR visualization
doi https://doi.org/10.52842/conf.caadria.2020.2.183
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 183-191
summary Data-driven Building Information Modelling (BIM) technology has brought new tools to efficiently deal with the tension between the real and the virtual environments in the field of Architecture, Engineering, Construction, and Operation (AECO). For historic assets, BIM represents a paradigm shift, enabling better decision-making about preventive maintenance, heritage management, and interpretation. The potential application of the Historic-BIM is creating a digital twin of the asset. This paper deals with the concept of a virtual environment for the consolidation and dissemination of heritage information. Here we show the process of creating interactive virtual environments for the Pampulha Modern Ensemble designed by Oscar Niemeyer in the 1940s, and the workflow to their dissemination in an AR visualization APP. Our results demonstrate the APP feasibility to the Pampulha's building interpretation.
keywords Augmented Reality (AR); Historic Building Information Modelling (HBIM); Heritage Interpretation; Modern Architecture
series CAADRIA
email
last changed 2022/06/07 07:55

_id ijac202018402
id ijac202018402
authors Mette Ramsgaard Thomsen, Paul Nicholas, Martin Tamke, Sebastian Gatz, Yuliya Sinke and Gabriella Rossi
year 2020
title Towards machine learning for architectural fabrication in the age of industry 4.0
source International Journal of Architectural Computing vol. 18 - no. 4, 335–352
summary Machine Learning (ML) is opening new perspectives for architectural fabrication, as it holds the potential for the profession to shortcut the currently tedious and costly setup of digital integrated design to fabrication workflows and make these more adaptable. To establish and alter these workflows rapidly becomes a main concern with the advent of Industry 4.0 in building industry. In this article we present two projects, which presents how ML can lead to radical changes in generation of fabrication data and linking these directly to design intent. We investigate two different moments of implementation: linking performance to the generation of fabrication data (KnitCone) and integrating the ability to adapt fabrication data in realtime as response to fabrication processes (Neural-Network Steered Robotic Fabrication). Together they examine how models can employ design information as training data and be trained to by step processes within the digital chain. We detail the advantages and limitations of each experiment, we reflect on core questions and perspectives of ML for architectural fabrication: the nature of data to be used, the capacity of these algorithms to encode complexity and generalize results, their task-specificness versus their adaptability and the tradeoffs of using them with respect to conventional explicit analytical modelling.
keywords Machine learning, architectural design, industry 4.0, digital fabrication, robotic fabrication, CNC knit, neural networks
series journal
email
last changed 2021/06/03 23:29

_id caadria2020_409
id caadria2020_409
authors Naboni, Roberto and Paparella, Giulio
year 2020
title Circular Concrete Construction Through Additive FDM Formwork
doi https://doi.org/10.52842/conf.caadria.2020.1.233
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 233-242
summary One of the major downsides of concrete construction is the difficulty to be adapted, modified and deconstructed. In this work, we look at the potential enabled by the use of Additive Formwork based on Fused Deposition Modelling, in order to design and manufacture structural elements which can be assembled and disassembled easily. We call this new typology of structures Circular Concrete Construction. The paper illustrates an integrated computational workflow, which encompasses design and fabrication. Technological aspects of the 3D printed formwork and its application in reversible node and strut connections are described, with reference to the material and structural aspects, as well as prototyping experiments. The work is a proof of concept that opens perspectives for a new type of reversible concrete construction.
keywords Circular Concrete Construction; Additive Formwork; Additive Manufacturing; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2020_346
id caadria2020_346
authors Ortner, Frederick Peter and Huang, Jeffrey
year 2020
title Modeling UAM Scenarios for Urban Design
doi https://doi.org/10.52842/conf.caadria.2020.2.071
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 71-80
summary Recent developments in unmanned aerial vehicles (UAVs), including drone delivery services and air taxis, are revolutionizing urban transport, leading to a new field of research referred to as Urban Air Mobility (UAM). While several contemporary efforts to computationally model future scenarios for UAM exist, in this paper we argue that these models tend to be narrowly conceived as air-space design and management tools and provide little information on ground-level impacts. This paper describes an ongoing effort to create UAM modelling tools useful specifically to urban designers as part of a push toward integration of urban airspace design with ground-level master-planning. Current functions permit designers to visualize drone-fleet origin-corridor-destination routes, generate a strategic model of UAM noise, and compare tradeoffs between UAM system efficiency and noise.
keywords urban air mobility (UAM); urban design; data-driven design; simulation; parametric design
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2020_306
id caadria2020_306
authors Akizuki, Yuta, Bernhard, Mathias, Kakooee, Reza, Kladeftira, Marirena and Dillenburger, Benjamin
year 2020
title Generative Modelling with Design Constraints - Reinforcement Learning for Object Generation
doi https://doi.org/10.52842/conf.caadria.2020.1.445
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 445-454
summary Generative design has been explored to produce unprecedented geometries, nevertheless design constraints are, in most cases, second-graded in the computational process. In this paper, reinforcement learning is deployed in order to explore the potential of generative design satisfying design objectives. The aim is to overcome the three issues identified in the state of the art: topological inconsistency, less variations in style and unpredictability in design. The goal of this paper is to develop a machine learning framework, which works as an intellectual design interpreter capable of codifying an input geometry to form a new geometry. Experiments demonstrate that the proposed method can generate a family of tables of unique aesthetics, satisfying topological consistency under given constraints.
keywords generative design; computational design; data-driven design; reinforcement learning; machine learning
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_115
id ecaade2020_115
authors Azambuja Varela, Pedro and Sousa, José Pedro
year 2020
title Liquid Stereotomy - the Tamandua Vault
doi https://doi.org/10.52842/conf.ecaade.2020.2.361
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 361-370
summary A renewed interest in stereotomy, narrowly entwined with digital technologies, has allowed for the recovery and proposal of new techniques and expressions in this building approach. A new classification scheme for stereotomy research allows for the framing of various aspects related to this discipline, including a newly developed fabrication system specially tailored for the wedge-shaped voussoirs. This fabrication system is based in a reusable mould which may assume an infinite number of geometries, avoiding the wasteful discarding of material found in subtractive strategies. The usage of a mould also allows for more sustainable materials to be employed, catering to current challenges. The strategies subject for demonstration in this project rely on various bottom-up approaches, which involve particle physic simulations such as a hanging model to compute an optimal stereo-funicular shape, or spring mechanisms to find optimal coplanar solutions. The proposed mechanisms work in a parametric algorithmically environment, able to handle dozens of uniquely different voussoirs at the same time. Together with the automatic translation to fabrication data, the proposed shape complexity would hardly be built with classic tools. The Tamandua Vault project has the purpose of exemplifying the possibilities of an updated stereotomy, while its design demonstrates current strategies that may be employed in the resolution of complex geometrical problems and bespoke fabrication of construction components for stereotomy.
keywords stereotomy; digital design; digital fabrication; compression; sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2022_16
id ecaade2022_16
authors Bailey, Grayson, Kammler, Olaf, Weiser, Rene, Fuchkina, Ekaterina and Schneider, Sven
year 2022
title Performing Immersive Virtual Environment User Studies with VREVAL
doi https://doi.org/10.52842/conf.ecaade.2022.2.437
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 437–446
summary The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learns the relationship between building geometry, typology, and construction type with the Global Warming potential (GWP) in tons of C02 equivalent (tCO2e). The first one, a regression model, can predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly through early predictions of the structure’s material and can be used as a tool for facilitating sustainable discussions between the architect and the client.
keywords Pre-Occupancy Evaluation, Immersive Virtual Environment, Wayfinding, User Centered Design, Architectural Study Design
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2020_233
id caadria2020_233
authors Bar-Sinai, Karen Lee, Shaked, Tom and Sprecher, Aaron
year 2020
title Sensibility at Large - A Post-Anthropocene Vision for Architectural Landscape Editing
doi https://doi.org/10.52842/conf.caadria.2020.2.223
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
summary The irreversible imprint of humankind on Earth calls for revisiting current construction practices. This paper forwards a vision for post-Anthropocene, large-scale, architectural, and landscape construction. This vision relates to transforming natural terrains into architecture using on-site robotic tools and enabling greater sustainability through increased sensibility. Despite advancements in large-scale digital fabrication in architecture, the field still mainly focuses on the production of objects. The proposed vision aims to advance theory and practice towards territorial scale digital fabrication of environments. Three notions are proposed: material-aware construction, large-scale customization, and integrated fabrication. These aspects are demonstrated through research and teaching projects. Using scale models, they explore the deployment of robotic tools toward reforming, stabilizing, and reconstituting soil in an architectural context. Together, they propose a theoretical ground for in situ digital fabrication for a new era, relinking architecture to the terrains upon which it is formed.
keywords Digital Fabrication; territorial scale; on-site robotics; geomaterials; computational design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_240
id ecaade2020_240
authors Bouza, Hayley and Aºut, Serdar
year 2020
title Advancing Reed-Based Architecture through Circular Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2020.1.117
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 117-126
summary This paper presents a completed research project that proposes a new approach for creating circular buildings through the use of biodegradable, in situ resources with the help of computational design and digital fabrication technologies. Common Reed (Phragmites Australis) is an abundantly available natural material found throughout the world. Reed is typically used for thatch roofing in Europe, providing insulation and a weather-tight surface. Elsewhere, traditional techniques of weaving and bundling reeds have long been used to create entire buildings. The use of a digital production chain was explored as a means towards expanding the potential of reed as a sustainable, locally produced, construction material. Following an iterative process of designing from the micro to the macro scale and by experimenting with robotic assembly, the result is a reed-based system in the form of discrete components that can be configured to create a variety of structures.
keywords Phragmites Australis; Reed; Discrete Design; Robotic Assembly; Circular Design; Biodegradable Architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_160
id caadria2020_160
authors Bruce, Caitlin, Sweet, Kevin and Ok, Jeongbin
year 2020
title Closing the Loop - Recycling Waste Plastic
doi https://doi.org/10.52842/conf.caadria.2020.1.135
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 135-144
summary Worldwide we produce billions of tonnes of waste per year, including a million tonnes of plastic waste. Currently, there are methods for recycling plastic, but these methods can be expensive and time-consuming, resulting in most of the plastic being thrown into the landfill. Because plastic does not fully degrade, it ends up in the ocean and other waterways, poisoning the water with toxins. The purpose of this research is to provide a solution to reducing plastic waste by creating an alternative method of recycling that utilises new technologies such as additive manufacturing, to create a building material that fits into the concept of the circular economy. The findings of this research explored the recycling of plastic by collecting plastic waste such as PLA (Polylactic Acid) from old 3D printed models and other sources. The plastic was recycled into filament for additive manufacturing (AM) and used to print a building component, establishing a foundational proof of concept for the use of recycled plastic as a potential building material.
keywords Additive Manufacturing; 3D Printing; Recycling Plastic ; Recycled Filament ; Waste Plastic
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia20_436
id acadia20_436
authors Chun Hin Fong, Jacky; Long Wun Poon, Adabelle; Sze Ngan, Wing; Hei Ho, Chung; Goepel, Garvin; Crolla, Kristof
year 2020
title Augmenting Craft with Mixed Reality
doi https://doi.org/10.52842/conf.acadia.2020.1.436
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 436-444.
summary This paper discusses novel methods for and advantages of integrating augmented reality (AR) and photogrammetry in hand clay-sculpting workflows. These techniques permit nontrained users to achieve higher precision during the sculpting process by holographically overlaying instructions from digital 3D source geometry on top of the sculpting material. By employing alternative notational systems in design implementation methods, the research positions itself in a postdigital context aimed at humanizing digital technologies. Throughout history, devices have been developed to increase production, such as Henry Dexter’s 1842 “Apparatus for Sculptors” for marble sculpting. Extrapolating from this, the workflow presented in this paper uses AR to overlay extracted information from 3D models directly onto the sculptor’s field of vision. This information can then become an AR-driven guidance system that assists the sculptor. Using the Microsoft HoloLens, holographic instructions are introduced in the production sequence, connecting the analog sculpture fabrication directly with a digital environment, thus augmenting the craftspeople’s agency. A series of AR-aided sculpting methods were developed and tested in a demonstrator case study project that created a small-scale clay copy of Henry Moore’s Sheep Piece (1971–1972). This paper demonstrates how user-friendly software and hardware tools have lowered the threshold for end users to develop new methods that straightforwardly facilitate and improve their crafts’ effectiveness and agency. This shows that the fusion of computational design technology and AR visualization technology can innovate a specific craft’s design and production workflow, opening the door for further application developments in more architecture-specific fabrication contexts.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_159
id ecaade2020_159
authors Chéraud, Florian
year 2020
title Beyond Design Freedom - Providing a Set-up for Material Modelling Within Kangaroo Physics
doi https://doi.org/10.52842/conf.ecaade.2020.1.459
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 459-468
summary Kangaroo Physics, a physical simulation engine, is amongst the most used form-finding tool with nearly 500 000 downloads. Mostly resorted to by users with moderate computation skills, it provides a simplified interface for an advanced simulation tool. It is a Particle Spring System relying on the Dynamic Relaxation method and offering a wide design space. Thanks to the visual scripting interface provided by Grasshopper, the user has access to a fixed set of physical "goals" and unitless variables, without having to work with more complex aspects of the Kangaroo physical model. This setup induces a disconnection between the user and the physical model with its variables. The goal of this research is to introduce, within the Grasshopper environment, a tensile parameter, the Young Modulus, into the Kangaroo model. Thus, while preserving the design freedom of the plug-in, a better understanding of the physical behaviour modelled in Kangaroo is offered to neophytes, as well as better control of material properties.
keywords Kangaroo Physics; Tensile Parameter; Form-Finding; User Control
series eCAADe
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2023_99
id ecaade2023_99
authors Dervishaj, Arlind, Fonsati, Arianna, Hernández Vargas, José and Gudmundsson, Kjartan
year 2023
title Modelling Precast Concrete for a Circular Economy in the Built Environment
doi https://doi.org/10.52842/conf.ecaade.2023.2.177
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 177–186
summary In recent years, there has been a growing interest in adopting circular approaches in the built environment, specifically reusing existing buildings or their components in new projects. To achieve this, drawings, laser scanning, photogrammetry and other techniques are used to capture data on buildings and their materials. Although previous studies have explored scan-to-BIM workflows, automation of 2D drawings to 3D models, and machine learning for identifying building components and materials, a significant gap remains in refining this data into the right level of information required for digital twins, to share information and for digital collaboration in designing for reuse. To address this gap, this paper proposes digital guidelines for reusing precast concrete based on the level of information need (LOIN) standard EN 17412-1:2020 and examines several CAD and BIM modelling strategies. These guidelines can be used to prepare digital templates that become digital twins of existing elements, develop information requirements for use cases, and facilitate data integration and sharing for a circular built environment.
keywords building information modelling (BIM), circular construction, reuse, concrete
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2020_190
id ecaade2020_190
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2020
title Smart Contracts for Decentralised Building Information Modelling
doi https://doi.org/10.52842/conf.ecaade.2020.2.565
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 565-574
summary The paper presents a model for decentralizing building information modelling, through implementing its infrastructure using the decentralized web. We discuss the shortcomings of BIM in terms of its infrastructure, with a focus on tracing identities of design authorship in this collective design tool. In parallel we examine the issues with BIM in the cloud and propose a decentralized infrastructure based on the Ethereum blockchain and the Interplanetary filesystem (IPFS). A series of computing nodes, that act as nodes on the Ethereum Blockchain, host disk storage with which they participate in a larger storage pool on the Interplanetary Filesystem. This storage is made available through an API is used by architects and designers creating and editing a building information model that resides on the IPFS decentralised storage. Through this infrastructure central servers are eliminated, and BIM libraries and models can be shared with others in an immutable and transparent manner. As such Architecture practices are able to exploit their intellectual property in novel ways, by making it public on the internet. The infrastructure also allows the decentralised creation of a resilient global pool of data that allows the participation of computation agents in the creation and simulation of BIM models.
keywords Blockchain; decentralisation; immutability; resilience; Building Information Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_432
id ecaade2020_432
authors Fragkia, Vasiliki and Worre Foged, Isak
year 2020
title Methods for the Prediction and Specification of Functionally Graded Multi-Grain Responsive Timber Composites
doi https://doi.org/10.52842/conf.ecaade.2020.2.585
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 585-594
summary The paper presents design-integrated methods for high-resolution specification and prediction of functionally graded wood-based thermal responsive composites, using machine learning. The objective is the development of new circular design workflow, employing robotic fabrication, in order to predict fabrication files linked to material performance and design requirements, focused on application for intrinsic responsive and adaptive architectural surfaces. Through an experimental case study, the paper explores how machine learning can form a predictive design framework where low-resolution data can solve material systems at high resolution. The experimental computational and prototyping studies show that the presented image-based machine learning method can be adopted and adapted across various stages and scales of architectural design and fabrication. This in turn allows for a design-per-requirement approach that optimizes material distribution and promotes material economy.
keywords material specification; responsive timber composites; machine learning; robotic fabrication; building envelopes
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2020_361
id caadria2020_361
authors Geht, Alexander, Weizmann, Michael, Grobman, Yasha Jacob and Tarazi, Ezri
year 2020
title Horizontal Forming in Additive Manufacturing: Design and Architecture Perspective
doi https://doi.org/10.52842/conf.caadria.2020.1.203
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 203-212
summary Extrusion based three-dimensional additive manufacturing technology forms objects by driving the material through a nozzle depositing a linear structure through vector-building blocks called roads. In a common 3-axis system, the roads are stacked layer upon layer for forming the final object. However, forming overhanging geometry in this way requires additional support structures increasing material usage and effective printing time. The paper presents a novel Horizontal forming (HF) approach and method for forming overhanging geometry, HF is a new extrusion-based AM approach that allows rapid and stable forming of horizontal structures without additional support in 3-axis systems. This approach can provide new design and manufacturing possibilities for extrusion AM, with emphasis on medium and large-scale AM. HF can affect the outcome's aesthetic and mechanical properties. Moreover, it can significantly accelerate the production process and reduce material waste. The present paper maps the influence of various parameters employed in the HF method, providing a deeper understanding of the printing process. Additionally, it explores and demonstrates the potential functional and aesthetic characteristics that can be achieved with HF for industrial design and architectural products.
keywords Additive manufacturing; Support; Horizontal forming (HF); Extrusion-based system; Fused granulate forming (FGF)
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2020_223
id caadria2020_223
authors Guo, Qi and Mei, Hongyuan
year 2020
title Research on Spatial Distribution and Performance Evaluation of Mass Sports Facilities Based on Big Data of Social Media - A Case Study of Harbin
doi https://doi.org/10.52842/conf.caadria.2020.1.537
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 537-546
summary The extensive application of Python script provides a new opportunity for the research on spatial distribution of mass sports facilities. The traditional way to obtain geography information of POI is by the crawler of API open platform, which needs accurate search content. Therefore, it is difficult to obtain the geography information of the mass sports facilities, which do not have specific category name. The paper took Harbin City in China as an example, combined the social network address text crawler and map websites crawler, accurately obtained the geographic information of mass sports facilities, and used ArcGIS to realize the visualization of the spatial distribution information. Combined with the information of Harbin population distribution, the paper evaluated the quantity spatial distribution and type spatial distribution of mass sports facilities by Lorentz curve and Global Moran's I, aiming to evaluate the health service performance of existing mass sports facilities and provide reference for the design and planning of sports facilities. The paper draws the conclusion that the distribution of mass sports buildings in Harbin is relatively average with the population distribution and the clustering of sports function types of mass sports buildings is obvious.
keywords mass sports facilities; spatial distribution; crawler; Lorentz curve; Global Moran’s I
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2020_456
id caadria2020_456
authors Halin, Gilles, Bolshakova, Veronika, Hochsheid, Elodie, Gless, Henri-Jean and Aida, Siala
year 2020
title Four Approaches for Integration of Digital BIM Practices in AEC Projects
doi https://doi.org/10.52842/conf.caadria.2020.1.883
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 883-892
summary The newest information and communication technologies bring a major shift to the AEC sector and foster it towards the new digital globalized economy. The last decades witnessed many changes in the AEC industry brought in by digital tools and by the adoption of Building Information Modeling/Management (BIM). The changes had influenced the common practices of design, construction and management, they have also fostered new digital practices into AEC. Innovative digital project management becomes a base element of an effective BIM project management. The project teams' collective competencies and skills contribute to design development and value engineering of the project. In this context, four approaches: BIM adoption, agile BIM, 4D digital decision-making, qualitative requirements to BIM, which are resulting from the research are presented in this article whose objective is to assist and facilitate the integration of digital in AEC specific professional practices.
keywords Digital Practice; BIM Process; Adoption; 4D; Agility
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_221948 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002