CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id caadria2020_021
id caadria2020_021
authors Firth, Charlotte, Dunn, Kate, King, Madison and Haeusler, M. Hank
year 2020
title Development of an Anthropomorphic End-effector for Collaborative use on Construction Sites
doi https://doi.org/10.52842/conf.caadria.2020.2.363
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 363-372
summary This paper describes the design and development of anthropomorphic end effectors for collaborative robots for use in the construction industry. The research focuses on the form and function of the end effectors including an in-depth investigation of soft robotic techniques and sensor technologies. There is critical and legislative demand for automation in construction to meet increasing labour shortages, a growing population and ensure safe work environments. In an attempt to address these demands industry originally looked to replace human labour, however, in the last 5 years, the focus has shifted to human-machine collaboration, particularly collaborative robots. To ensure safety and increase productivity, end effectors also need to be well designed and collaborative. This research, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords End Effector; Construction Industry; Collaborative Robotics; Soft Robotics; Sensor Technology
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2020_116
id ecaade2020_116
authors Firth, Charlotte, Dunn, Kate and Haeusler, M.Hank
year 2020
title Design Process for a Soft Flexible Palm - Improving grasp strength in an anthropomorphic end effector for collaborative robots in construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.423
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 423-432
summary This paper describes an iterative design process to create an anthropomorphic end-effector for a collaborative robot in construction. The focus is on improving the palm or juncture of the handlike end effector. Anthropomorphic end effectors typically have stiff, rigid palms that only provide support to the fingers rather than being an active part of the end effector. This research contributes to new knowledge through a detailed investigation of the role the palm has in improving the grip strength and control. This control and strength is essential for operating tools commonly used on construction sites. Consequently, the paper asks the question and investigates if a flexible palm could provide added support and grip for end effectors needed for complex processes.Via an action-based research method, the paper uses soft robotic techniques to experiment with a range of pneumatic iterative solutions to create a functioning palm, inspired by the human hand. The resulting end effector will aim to mimic the behaviours of the human hand.This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords End Effector; Hybrid Tools; Soft Robotics; Anthropomorphic
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2020_349
id sigradi2020_349
authors González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Quitral-Zapata, Francisco Javier; Valenzuela-Astudillo, Eduardo Antonio
year 2020
title SISCOM: Cooperative Multi-Robot Systems in Construction
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 349-356
summary We present an ongoing research project focused on the development of more efficient setups for cooperative multi-robot systems in 3D-printed construction. Early kinematic simulations of a mobile robotic cell prototype with two ceiling-mounted orbiting manipulators have provided new insights into 3D printing topology. An extrusion nozzle is mounted on each collaborative robot whose primary function is to match the extrusion path to the print contour while they move along a circular path. The challenge of setting up on site a semi-structured environment for cooperative multi-robot 3D printing led us to think up a new species of construction 3D printer.
keywords 3D-Printed construction, Cooperative multi-robot system, Mobile robotic cell, Collaborative robot, Robots in architecture
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_351
id ecaade2020_351
authors Kontovourkis, Odysseas, Stylianou, Sofia and Kyriakides, George
year 2020
title An open-source bio-based material system development for sustainable digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2020.2.031
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 31-40
summary The development of bio-based material systems and their correlation with digital design and fabrication processes is an ever-evolving area of research with a number of experimental investigations. One such direction of investigation is related to the use of mycelium-based materials, which can minimize environmental impact and energy consumption during production, but also can allow alternative sustainable construction approaches to come to the fore. This work proposes an open-source mycelium-based construction material development, emphasizing on three interrelated steps. Firstly, the fungi growth based on Pleurotus ostreatus mycelium. Secondly, the digital production of custom formworks and material casting for uniform growth and building components creation. Finally, the construction technique investigation based on layering and stabilization of components. Through the suggested open-source bio-based material system development, the aim is to provide an alternative approach in construction that involves an ecological material with low environmental impact, interrelated with digital fabrication and assembly processes. This might open new directions of investigation to the wider architecture and construction community, allowing further consideration and possible implementation of mycelium material towards a more sustainable construction.
keywords Bio-based material; mycelium growth; digital fabrication; construction systems; sustainable construction
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2020_056
id caadria2020_056
authors Schnabel, Marc Aurel and Chowdhury, Shuva
year 2020
title VR Unmatched - Leveraging Non-experts as Co-Urban Designers
doi https://doi.org/10.52842/conf.caadria.2020.1.651
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 651-660
summary The recent development in Virtual Reality (VR) allows for novel engagement in participatory urban design. Despite that any design approach cannot include and address all items that are relevant or needed during a design process, social VR design instruments offer additionality via their real-time generation and visualisation possibilities that are unmatched in conventional realms. The research employs an anthropogenic approach to design research to engage end-users in the design process. An Immersive Virtual Environment (IVE) instrument 'SketchPad' allows laypersons to design successfully urban forms. SketchPad engaged laypersons in a meaningful design discussion and generations of urban spaces. The research discusses the findings of the experiments. The paper concludes with a reflection of how non-experts as co-designers can use IVE instruments to drive change of their neighbourhood proactively and to positively impact on the liveability of their neighbourhood.
keywords SketchPad; Co-design; Layperson; Design Participation; Urban Design
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia20_614
id acadia20_614
authors Xi Han, Isla; P.G. Bruun, Edvard; Marsh, Stuart; Tavano, Matteo; Adriaessens, Sigrid; Parascho, Stefana
year 2020
title From Concept to Construction - A Transferable Design and Robotic Fabrication Method for a Building-Scale Vault
doi https://doi.org/10.52842/conf.acadia.2020.1.614
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 614-623.
summary The LightVault project demonstrates a novel robotic construction method for masonry vaults, developed in a joint effort between Princeton University and the global architecture and engineering firm Skidmore, Owings & Merrill (SOM). Using two cooperating robotic arms, a full-scale vault (plan: 3.6 × 6.5 m, height: 2.2 m) made up of 338 glass bricks was built live at the “Anatomy of Structure: The Future of Art + Architecture” exhibition. A major component of the project was developing a fabrication method that could be easily adapted to different robotic setups since the research, prototyping, and final exhibition occurred on different continents. This called for approaches that balanced the generic and the specific, allowing for quick and flexible construction staging and execution. The paper is structured as follows. First, we introduce the notion of transferability in robotic construction and then elaborate on this concept through the four major challenges in the LightVault project development: (1) prototype scalability, (2) end-effector design, (3) path planning and sequencing, and (4) fabrication tolerances. To develop and test solutions for these challenges, we iterated through several prototypes at multiple scales, with different materials for the standardized bricks, and at three distinct locations: Embodied Computation Lab, Princeton, US; Global Robots Ltd., Bedford, UK; and Ambika P3 gallery, London, UK. While this paper is specifically tailored to the construction of masonry structures, our long-term goal is to enable more robotic fabrication projects that consider the topic of transferability as a means to develop more robust and broadly applicable techniques.
series ACADIA
type normal paper
email
last changed 2024/03/11 06:44

_id artificial_intellicence2019_87
id artificial_intellicence2019_87
authors Ming Lu, Wei Ran Zhu, and Philip F. Yuan
year 2020
title Toward a Collaborative Robotic Platform: FUROBOT
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_6
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2021)
summary In usual robotic fabrication by 6-axis industrial robots such as KUKA, ABB, and other brands, the usual robot’s 4th, 5th, and 6th axis is exactly converged in one point. When this type robot (pieper) is doing movement commands, setting the degree of 4th axis close to zero is an ideal condition for motion stability, especially for putting device which connects to tool head on 4th axis arm part. In plastic melting or others print which not cares the rotation angle about the printing direction (the printing direction means the effector’s output normal direction vector, KUKA is X axis, ABB is Z axis), the optimization of 4th axis technology not only makes printing stable but also makes better quality for printing. The paper introduces a new algorithm to get the analytics solution. The algorithm is clearly explained by mathematics and geometry ways. At the end of the paper, a grasshopper custom plugin is provided, which contains this new algorithm, with this plugin, people can get the optimized target path plane more easily.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id ecaade2020_052
id ecaade2020_052
authors Monteiro, Verner, Januário, Pedro and Veloso, Maísa
year 2020
title Design collaboration towards constructibility in parametric design process - a design experiment with architecture students
doi https://doi.org/10.52842/conf.ecaade.2020.1.305
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 305-314
summary The use of parametric modeling in architectural design processes has made possible the creation of novel complex-shaped projects, but also launched new materialization challenges. This hard task addressed to a relevant need to comprehend the impact of constructibility on parametric design teaching. We analyzed how multicultural collaborative teams of students introduced construction constraints in parametric design processes, in an European architecture school. The method consisted of two design experiments with architecture students who designed a pavilion, starting from constraints such as time, material and pre-existences. The results addressed that the introduction of construction constraints since the early conceptual design stages conditioned the architectural shape, but also optimized time, decreased rework, and helped on decision-making. Despite the multiculturality, the students' lack of knowledge in construction methods indicated a high need for integration with engineering students and industry partners since graduation.
keywords Parametric Design; Constructibility; Collaborative Design; Design Process
series eCAADe
email
last changed 2022/06/07 07:58

_id cdrf2019_280
id cdrf2019_280
authors Paul Loh, Yuhan Hou, Chun Tung Tse, Jiaqi Mo, and David Leggett
year 2020
title Freeform Volumetric Fabrication Using Actuated Robotic Hot Wire Cutter
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_26
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper discusses the design, fabrication and operational workflow of a novel hot-wire cutter used as an end effector for a robotic arm. Typically, hot wire cutters used a linear cutting element which results in ruled surfaces geometry. While several researchers have examined the use of hot wire cutter with cooperative robotic arms to create non-ruled surface geometry, this research explores the use of an actuated hot wire cutter manoeuver by a single robotic arm to produce similar form. The paper outlines the machine making process and its workflow resulting in a 1:1 scale prototype. The paper concludes by examining how the novel tool can be applied to an urban stage design. The research set up a fabrication procedure that has the potential to be deployed as an on-site fabrication methodology.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_089
id caadria2020_089
authors Poinet, Paul, Stefanescu, Dimitrie and Papadonikolaki, Eleni
year 2020
title Web-Based Distributed Design to Fabrication Workflows
doi https://doi.org/10.52842/conf.caadria.2020.1.095
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 95-104
summary As architectural design projects tend to tackle larger scales and become more complex, multiple involved actors often need to work from different remote locations. This increased complexity impacts the digital design-to-fabrication workflows that become more challenging, as each actor involved in a project operates on different software environments and needs to access precise fabrication data of specific design components. Consequently, managing and keeping track of design changes throughout the design-to-fabrication workflow still remains a challenge for all actors involved. This paper discusses how this challenge can be tackled through both Speckle, a complete open source data platform for the Architecture, Engineering and Construction (AEC), and SpeckleViz, a custom web-based interactive Activity Network Diagram (AND) built upon Speckle. SpeckleViz continuously maps data transfers across design and building processes, enabling the end-users to explore, interact and get a better understanding of the constantly evolving digital design workflows. This is demonstrated in this paper through a computational design and digital fabrication workshop conducted at the Centro de Estudios Superiores de Diseño de Monterrey (CEDIM), during which an integrative, file-less collaborative design workflow has been set through Speckle, connecting different Rhino-Grasshopper sessions acting as discrete computational design pipelines.
keywords Collaborative Workflows; Distributed Design; Activity Network Diagram; Data Flow
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia20_426
id acadia20_426
authors Zohier, Islam; EL Antably, Ahmed; S. Madani, Ahmed
year 2020
title An AI Lens on Historic Cairo
doi https://doi.org/10.52842/conf.acadia.2020.1.426
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 426-434.
summary Reports show that numerous heritage sites are in danger due to conflicts and heritage mismanagement in many parts of the world. Experts have resorted to digital tools to attempt to conserve and preserve endangered and damaged sites. To that end, in this applied research, we aim to develop a deep learning framework applied to the decaying tangible heritage of Historic Cairo, known as “The City of a Thousand Minarets.” The proposed framework targets Cairo’s historic minaret styles as a test case study for the broader applications of deep learning in digital heritage. It comprises recognition and segmentation tasks, which use a deep learning semantic segmentation model trained on two data sets representing the two most dominant minaret styles in the city, Mamluk (1250–1517 CE) and Ottoman (1517–1952 CE). The proposed framework aims to classify these two types using images. It can help create a multidimensional model from just a photograph of a historic building, which can quickly catalog and document a historic building or element. The study also sheds light on the obstacles preventing the exploration and implementation of deep learning techniques in digital heritage. The research presented in this paper is a work-in-progress of a larger applied research concerned with implementing deep learning techniques in the digital heritage domain.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_484
id ecaade2020_484
authors Aguilar, Pavel, Borunda, Luis and Pardal, Cristina
year 2020
title Additive Manufacturing of Variable-Density Ceramics, Photocatalytic and Filtering Slats
doi https://doi.org/10.52842/conf.ecaade.2020.1.097
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 97-106
summary Additive Manufacturing (AM) offers the potential development of novel architectural applications of ceramic building components that can be engineered at the level of material to the extent of designing its performance and properties by density variations. This research presents a computational method and fabrication technique emulating complex material behavior via AM of intricate geometries and presents components with photocatalytic and climatic properties. It proposes an innovative application of AM of ceramic components in architecture to explore potential bioclimatic and antipollution performative use. Lattices are defined and manufactured with density variation gradients by tracing rectilinear clay deposition toolpaths that induce porosity intended for fluid filtering and to maximize sun exposure. The design method for photocatalytic, particle filtration and evaporative cooling local characterization introduced by complex patterning elements in architectural envelope slat components processed with radiation analysis influenced design are validated by simulation and experimental testing on specimens manufactured by paste extrusion.
keywords Ceramic 3D Printing; Paste Extrusion; Photocatalytic Filter; Performative Design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2022_16
id ecaade2022_16
authors Bailey, Grayson, Kammler, Olaf, Weiser, Rene, Fuchkina, Ekaterina and Schneider, Sven
year 2022
title Performing Immersive Virtual Environment User Studies with VREVAL
doi https://doi.org/10.52842/conf.ecaade.2022.2.437
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 437–446
summary The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learns the relationship between building geometry, typology, and construction type with the Global Warming potential (GWP) in tons of C02 equivalent (tCO2e). The first one, a regression model, can predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly through early predictions of the structure’s material and can be used as a tool for facilitating sustainable discussions between the architect and the client.
keywords Pre-Occupancy Evaluation, Immersive Virtual Environment, Wayfinding, User Centered Design, Architectural Study Design
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2020_449
id sigradi2020_449
authors Becerra-Santacruz, Habid; Becerra-Santacruz, Axel
year 2020
title Mapping of emerging territorial phenomena at Micro Scale: Development of collaborative database as a base for Evidence-Based Design Strategies
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 449-454
summary This paper presents an active analysis and research approach for design workshops at the Faculty of Architecture at UMNSH. The proposed scheme for final year design studio demands students to participate in the confrontation of reality to understand first-hand through databases; the complex problems of contemporary society and its relationship with the habitat. In order to understand the diverse emergent phenomena of the city, a collaborative work is implemented for the development of a database, occupation maps and territorial dynamics on a micro scale. From the evidence supported by data, students articulate design strategies and specific territorial actions.
keywords Collaborative database, Evidence-based design strategies, Emergent phenomena mapping, Design pedagogy
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2020_209
id caadria2020_209
authors Bissoonauth, Chitraj, Fischer, Thomas and Herr, Christiane M.
year 2020
title An Ethnographic Enquiry into Digital Design Tool Making
doi https://doi.org/10.52842/conf.caadria.2020.2.213
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
summary This paper presents an ethnographic pilot study into the design and application of digital design tools in a leading Shanghai-based architecture and engineering firm. From a participant observer's point of view, we employ qualitative research methods to enquire the conditions and experiences entailed in day-to-day collaborative activities in conjunction with the custom-development of digital design tools in advanced practice. The described initial ethnographic enquiry lasted for six weeks. While previous studies tended to favour post-rationalised and outcome-focused reports into toolmaking for design, we observe through participant observation that daily collaboration in practice is multi-faceted and overwhelmingly more complex. This paper further portrays and reflects on the concomitant opportunities and challenges of participant observation as a research method that can bridge academia and practice. We argue that, in order to appreciate and to inform digital design toolmaking practices, it is essential to recognise the richness of practice, in and of itself.
keywords digital design toolmaking; custom-developed tools; collaborative processes; ethnography; participant observation
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2017_069
id sigradi2017_069
authors Briones Lazo, Carolina; Carolina Soto Ogueta
year 2017
title La enseñanza de BIM en Chile, el desafío de un cambio de enfoque centrado en la metodología por sobre la tecnología. [BIM education in Chile, the challenge of a shift of focus centered on methodology over technology.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.470-478
summary This article presents the level of adoption of BIM in Chile referring to recent studies carried out in the country, demonstrating that there has not been a significant increase in the use of this methodology by the industry. According to the analysis of international cases on educational frameworks, the authors argue that the development of a national education strategy for BIM with a focus on defining BIM capabilities required to assume the national mandate 2020, along with promoting collaborative work environments and active learning methodologies would be very beneficial.
keywords Building Information Modelling; Metodología BIM; Adopción de BIM; Estrategia de enseñanza de BIM.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2020_542
id ecaade2020_542
authors Brown, Andre, Liu, Yisi, Webb, Nicholas and Knight, Mike
year 2020
title Interpreting and exploiting narrative as a sketch design generator for application in VE
doi https://doi.org/10.52842/conf.ecaade.2020.1.449
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 449-458
summary The research in this paper focusses on how a narrative text can be the generator of an architectural drawing, or other architectural representation, such as an Architectural Virtual Environment. The drawn physical sketch has traditionally played that role. A particular approach to narrative has been important for some notable architects and their architecture. Ian Ritchie (2014), for instance, celebrates the use of poetry to describe the essential spirit of a scheme before any drawing is done. The work in the paper here describes the proposition to capture such narrative text in a systematic and structured way. We describe foundational work on how the captured narrative text has been translated into a contemporary, computer-mediated, design development environment. Different narrative accounts recalling a now demolished house form the focus case study. This case study is the vehicle through which the initial principles establishing how best to move from narrative to virtual representation are established and tested.
keywords virtual environment; narrative; sketch; virtual reality
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_526
id acadia20_526
authors Bruce, Mackenzie; Clune, Gabrielle; Culligan, Ryan; Vansice, Kyle; Attraya, Rahul; McGee, Wes; Yan Ng, Tsz
year 2020
title FORM{less}
doi https://doi.org/10.52842/conf.acadia.2020.1.526
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 526-535
summary Form{less} focuses on the creation of complex thin-shell concrete forms using robotically thermoformed plastic molds. Typically, similar molds would be created using the vacuum forming process, producing direct replications of the pattern. Creating molds with this process is not only time- and material-intensive but also costly if customization is involved. Thin-shell concrete forms often require a labor-intensive process of manually finishing the open-face surface. The devised process of thermoforming two nested molds allows the concrete to be cast in between, with finished surfaces on both sides. Molds made with polyethylene terephthalate glycol (PETG) allow the formwork to be reused and recycled. The research and fabrication work include the development of heating elements and the creation of the robotic process for forming the PETG. The PETG is manipulated via a robotic arm, with a custom magnetic end effector. The integration of robotics not only enables precision for manufacturing but also allows for replicability with unrestricted threedimensional deformation. The repeatable process allows for rapid prototyping and geometric customization. Design options are then simulated computationally using SuperMatterTools, enabling further design exploration of this process without the need for extensive physical prototyping. This research aims to develop a process that allows for the creation of complex geometries while reducing the amount of material waste used for concrete casting. The novelty of the process created by dynamically forming PETG allows for quick production of formwork that is both customizable and replicable. This method of creating double-sided building components is simulated at various scales of implementation.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_156
id ecaade2020_156
authors Hemmerling, Marco and Maris, Simon
year 2020
title INTERCOM - A platform for collaborative design processes
doi https://doi.org/10.52842/conf.ecaade.2020.2.173
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 173-180
summary The INTERCOM project propounds a cloud-based collaboration platform for digital planning processes in architecture. The concept is based on an openBIM approach and ensures open access for all partners involved. At its core it provides IFC-based and model-related online tools for planning, communication and collaboration. The interaction with the model and the exchange with other project partners takes place in real-time via a model-related chat and BCF exports. In addition, the integration of e-learning modules (e.g. video tutorials, wikis, project documents) encourages problem solving through further education. Especially the integration of communication and collaboration tools is supposed to enhance the decision making throughout the design process and become a key factor for a successful and coordinated BIM process. Primarily INTERCOM has been developed as a prototype for teaching BIM in interdisciplinary teams. Subsequently, the application can also be adopted for professional practice. The paper evaluates previous experiences from BIM cloud teaching and discusses the conception and development of the proposed collaborative platform.
keywords architecture curriculum; didactics; building information modeling (BIM); collaborative design process; common data environment (CDE)
series eCAADe
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_609191 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002