CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id caadria2020_149
id caadria2020_149
authors Larsen, Niels Martin, Aagaard, Anders Kruse and Kieffer, Lynn Hyun
year 2020
title Digital Workflows for Natural Wood in Constructions
doi https://doi.org/10.52842/conf.caadria.2020.1.125
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 125-134
summary This research challenges current linear processing methods for standardised timber. The current industry does not leave room for irregular shapes of naturally grown wood. This paper describes a bespoke design and fabrication method that leverages these natural irregularities of the wood. The customised development of a digital tool allows the distribution of the non-standard material to form a structure and the associated robotic machining processes of the individual logs. This research seeks to motivate a more inclusive, diverse and sensitive culture of processing and building with wood while exploring the unique aesthetic qualities of non-standardised wood.
keywords robotic fabrication; digital workflows; wood processing
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_233
id caadria2020_233
authors Bar-Sinai, Karen Lee, Shaked, Tom and Sprecher, Aaron
year 2020
title Sensibility at Large - A Post-Anthropocene Vision for Architectural Landscape Editing
doi https://doi.org/10.52842/conf.caadria.2020.2.223
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
summary The irreversible imprint of humankind on Earth calls for revisiting current construction practices. This paper forwards a vision for post-Anthropocene, large-scale, architectural, and landscape construction. This vision relates to transforming natural terrains into architecture using on-site robotic tools and enabling greater sustainability through increased sensibility. Despite advancements in large-scale digital fabrication in architecture, the field still mainly focuses on the production of objects. The proposed vision aims to advance theory and practice towards territorial scale digital fabrication of environments. Three notions are proposed: material-aware construction, large-scale customization, and integrated fabrication. These aspects are demonstrated through research and teaching projects. Using scale models, they explore the deployment of robotic tools toward reforming, stabilizing, and reconstituting soil in an architectural context. Together, they propose a theoretical ground for in situ digital fabrication for a new era, relinking architecture to the terrains upon which it is formed.
keywords Digital Fabrication; territorial scale; on-site robotics; geomaterials; computational design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_240
id ecaade2020_240
authors Bouza, Hayley and Aºut, Serdar
year 2020
title Advancing Reed-Based Architecture through Circular Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2020.1.117
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 117-126
summary This paper presents a completed research project that proposes a new approach for creating circular buildings through the use of biodegradable, in situ resources with the help of computational design and digital fabrication technologies. Common Reed (Phragmites Australis) is an abundantly available natural material found throughout the world. Reed is typically used for thatch roofing in Europe, providing insulation and a weather-tight surface. Elsewhere, traditional techniques of weaving and bundling reeds have long been used to create entire buildings. The use of a digital production chain was explored as a means towards expanding the potential of reed as a sustainable, locally produced, construction material. Following an iterative process of designing from the micro to the macro scale and by experimenting with robotic assembly, the result is a reed-based system in the form of discrete components that can be configured to create a variety of structures.
keywords Phragmites Australis; Reed; Discrete Design; Robotic Assembly; Circular Design; Biodegradable Architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_564
id acadia20_564
authors Cutajar, Sacha; Costalonga Martins, Vanessa; van der Hoven, Christo; Baszyñski, Piotr; Dahy, Hanaa
year 2020
title Towards Modular Natural Fiber-Reinforced Polymer Architecture
doi https://doi.org/10.52842/conf.acadia.2020.1.564
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 564-573.
summary Driven by the ecological crisis looming over the 21st century, the construction sector must urgently seek alternative design solutions to current building practices. In the wake of emergent digital technologies and novel material strategies, this research proposes a lightweight architectural solution using natural fiber-reinforced polymers (NFRP), which elicit interest for their inherent renewability as compared to high-performance yarns. Two associated fabrication techniques are deployed: tailored fiber placement (TFP) and coreless filament winding (CFW), both favored for their additive efficiencies granted by strategic material placement. A hypothesis is formed, postulating that their combination can leverage the standalone complexities of molds and frames by integrating them as active structural elements. Consequently, the TFP enables the creation of a 2D stiffness-controlled preform to be bent into a permanent scaffold for winding rigid 3D fiber bodies via CFW. A proof of concept is generated via the small-scale prototyping and testing of a stool, with results yielding a design of 1 kg capable of carrying 100 times its weight. Laying the groundwork for a scaled-up architectural proposal, the prototype instigates alterations to the process, most notably the favoring of a modular global design and lapped preform technique. The research concludes with a discussion on the resulting techno-implications for automation, deployment, material life cycle, and aesthetics, rekindling optimism towards future sustainable practices.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2023_99
id ecaade2023_99
authors Dervishaj, Arlind, Fonsati, Arianna, Hernández Vargas, José and Gudmundsson, Kjartan
year 2023
title Modelling Precast Concrete for a Circular Economy in the Built Environment
doi https://doi.org/10.52842/conf.ecaade.2023.2.177
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 177–186
summary In recent years, there has been a growing interest in adopting circular approaches in the built environment, specifically reusing existing buildings or their components in new projects. To achieve this, drawings, laser scanning, photogrammetry and other techniques are used to capture data on buildings and their materials. Although previous studies have explored scan-to-BIM workflows, automation of 2D drawings to 3D models, and machine learning for identifying building components and materials, a significant gap remains in refining this data into the right level of information required for digital twins, to share information and for digital collaboration in designing for reuse. To address this gap, this paper proposes digital guidelines for reusing precast concrete based on the level of information need (LOIN) standard EN 17412-1:2020 and examines several CAD and BIM modelling strategies. These guidelines can be used to prepare digital templates that become digital twins of existing elements, develop information requirements for use cases, and facilitate data integration and sharing for a circular built environment.
keywords building information modelling (BIM), circular construction, reuse, concrete
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2020_180
id caadria2020_180
authors Jensen, Mads Brath and Das, Avishek
year 2020
title Technologies and Techniques for Collaborative Robotics in Architecture - - establishing a framework for human-robotic design exploration
doi https://doi.org/10.52842/conf.caadria.2020.2.293
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 293-302
summary This study investigates the technological and methodological challenges in establishing an indeterministic approach to robotic fabrication that allows for a collaborative and creative design/fabrication process. The research objective enquires into how robotic processes in architecture can move from deterministic fabrication processes towards explorative and indeterministic design processes. To address this research objective, the study specifically explores how an architect and a robot can engage in a process of co-creation and co-evolution, that is enabled by a collaborative robotic arm equipped with an electric gripper and a web camera. Through a case-based experiment, of designing and constructing an adjustable façade system consisting of parallel wood lamellas, designer and robotic system co-create by means of interactive processes. The study will present and discuss the technological implementations used to construct the interactive robotic-based design process, with emphasis on the integration of visual analysis features in Grasshopper and on the benefits of establishing a state machine for interactive and creative robotic control in architecture.
keywords Design cognition; Digital fabrication ; Construction; Human-computer interaction
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2020_534
id sigradi2020_534
authors Mariano, Pedro Oscar Pizzetti; Fonseca, Raphaela Walger da; Pereira, Fernando Oscar Ruttkay; Pereira, Alice Theresinha Cybis
year 2020
title Autonomous parametric process for daylight simulation applied to the proposal of a daylighting of buildings performance tool
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 534-540
summary The openings features definition, considering the obstructions influence caused by the urban environment, are extremely relevant for the daylit buildings design. The complexity of the daylight phenomenon and the need to estimate its performance spread the use of parametric simulation and simulation programs. Thus, this article aims to create a parametric process, derived from a digital process, capable of simulating and registering the performance of daytime construction in different urban scenarios in an automated way. This process made it possible to generate a series of data capable of producing tools for understanding the phenomenon of natural daylight.
keywords Parametric process, Simulation, Daylighting, Building performance
series SIGraDi
email
last changed 2021/07/16 11:52

_id ijac202018206
id ijac202018206
authors Mitterberger, Daniela and Tiziano Derme
year 2020
title Digital soil: Robotically 3D-printed granular bio-composites
source International Journal of Architectural Computing vol. 18 - no. 2, 194-211
summary Organic granular materials offer a valid alternative for non-biodegradable composites widely adopted in building construction and digital fabrication. Despite the need to find alternatives to fuel-based solutions, current material research in architecture mostly supports strategies that favour predictable, durable and homogeneous solutions. Materials such as soil, due to their physical properties and volatile nature, present new challenges and potentials to change the way we manufacture, built and integrate material systems and environmental factors into the design process. This article proposes a novel fabrication framework that combines high-resolution three-dimensional- printed biodegradable materials with a novel robotic-additive manufacturing process for soil structures. Furthermore, the research reflects on concepts such as affordance and tolerance within the field of digital fabrication, especially in regards to bio-materials and robotic fabrication. Soil as a building material has a long tradition. New developments in earth construction show how earthen buildings can create novel, adaptive and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough geometrical articulations. This research proposes to use a robotic binder-jetting process that creates novel organic bio-composites to overcome such limitations of common earth constructions. In addition, this article shows how biological polymers, such as polysaccharides-based hydrogels, can be used as sustainable, biodegradable binding agents for soil aggregates. This article is divided into four main sections: architecture and affordance; tolerance versus precision; water-based binders; and robotic fabrication parameters. Digital Soil envisions a shift in the design practice and digital fabrication that builds on methods for tolerance handling. In this context, material and geometrical properties such as material porosity, hydraulic conductivity and natural evaporation rate affect the architectural resolution, introducing a design process driven by matter. Digital Soil shows the potential of a fully reversible biodegradable manufacturing process for load-bearing architectural elements, opening up new fields of application for sustainable material systems that can enhance the ecological potential of architectural construction.
keywords Robotic fabrication, adaptive materials, water-based fabrication, affordance, organic matter, additive manufacturing
series journal
email
last changed 2020/11/02 13:34

_id acadia20_446
id acadia20_446
authors Norell, Daniel; Rodhe, Einar; Hedlund, Karin
year 2020
title Completions
doi https://doi.org/10.52842/conf.acadia.2020.1.446
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 446-455.
summary Reuse of construction and demolition waste tends to be exceptional rather than systemic, despite the fact that such waste exists in excess. One of the challenges in handling used elements and materials is integrating them into a digital workflow through means of survey and representation. Techniques such as 3D scanning and robotic fabrication have been used to target irregular geometries of such extant material. Scanning can be applied to digitally define a unique rather than standard stock of materials or, as in the field of preservation, to transfer specific forms and qualities onto a new stock. This paper melds these two approaches through Completions, a project that promotes reuse by integrating salvaged elements and materials into new assemblies. Drawing from the ancient practice of reuse known as spolia, the work develops from the identification and documentation of a varied set of used entities that become points of departure for subsequent design and production of new entities. This involves multiple steps, from locating and selecting used elements to scanning and fabrication. Three assemblies based on salvaged objects are produced: a window frame, a door panel, and a mantelpiece. Different means of documentation are outlined in relation to specific qualities of these objects, from photogrammetry to image and mesh-based tracing. Authentic qualities belonging to these elements, such as wear and patina, are coupled with more ambiguous forms and materialities only attainable through digital survey and fabrication. Finally, Completions speculates on how more automated workflows might make it feasible to develop extensive virtual catalogs of used objects that designers could interact with remotely.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_089
id caadria2020_089
authors Poinet, Paul, Stefanescu, Dimitrie and Papadonikolaki, Eleni
year 2020
title Web-Based Distributed Design to Fabrication Workflows
doi https://doi.org/10.52842/conf.caadria.2020.1.095
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 95-104
summary As architectural design projects tend to tackle larger scales and become more complex, multiple involved actors often need to work from different remote locations. This increased complexity impacts the digital design-to-fabrication workflows that become more challenging, as each actor involved in a project operates on different software environments and needs to access precise fabrication data of specific design components. Consequently, managing and keeping track of design changes throughout the design-to-fabrication workflow still remains a challenge for all actors involved. This paper discusses how this challenge can be tackled through both Speckle, a complete open source data platform for the Architecture, Engineering and Construction (AEC), and SpeckleViz, a custom web-based interactive Activity Network Diagram (AND) built upon Speckle. SpeckleViz continuously maps data transfers across design and building processes, enabling the end-users to explore, interact and get a better understanding of the constantly evolving digital design workflows. This is demonstrated in this paper through a computational design and digital fabrication workshop conducted at the Centro de Estudios Superiores de Diseño de Monterrey (CEDIM), during which an integrative, file-less collaborative design workflow has been set through Speckle, connecting different Rhino-Grasshopper sessions acting as discrete computational design pipelines.
keywords Collaborative Workflows; Distributed Design; Activity Network Diagram; Data Flow
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2020_291
id sigradi2020_291
authors Quitral-Zapata, Francisco Javier; González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Martínez-Rocamora, Alejandro
year 2020
title Workflow for a Timber Joinery Robotics
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 291-296
summary We present a novel workflow for timber joinery robotics in low-rise building construction. A parametric 3D model that associates architectural design, structure geometry and robotic fabrication information was implemented using only CAD-based visual robot programming. Our case study is the design and manufacturing process of a two-story timber-framed dwelling. The main frames of the structure were assembled with mortise and tenon timber joints machined in glue-laminated timber using a 7-axis industrial robot in a wood company. This pioneering experience aims to apply timber framing robotics to social housing in emerging countries.
keywords Robots in architecture, Robotic timber construction, Timber framing, Timber Joinery Robotics, Visual robot programming
series SIGraDi
email
last changed 2021/07/16 11:49

_id sigradi2020_306
id sigradi2020_306
authors Raspall, Felix; Banon, Carlos; Maheshwary, Sourabh
year 2020
title Timescapes: Design and Additive Manufacturing Workflows for freeform, ornamental architectural surfaces
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 306-311
summary The application of Additive Manufacturing in architecture is an emerging research trend. Most of the research focuses on large-scale concrete and clay printing and, however, overlooks Fused Filament Fabrication (FFF), the most ubiquitous and inexpensive printing technology. Reasons for this include FFF’s reduced build volume, low mechanical resistance, and long printing times. In this research, the use of FFF for the construction of ornamental architectural surfaces is proposed, developed, and tested in a permanent, full-scale project. A discussion on the digital workflows, design, manufacturing, and assembly processes is presented, leading to a conclusion and outlook based on the evidence collected and highlighting the key advantages and main challenges of using FFF in architecture.
keywords Additive manufacturing, Freeform architecture, Ornament, Fused filament fabrication, Parametric architecture
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2020_855
id sigradi2020_855
authors Salinas Arriagada, Alexis; García Alvarado, Rodrigo; Carrasco Perez, Patricio
year 2020
title Bio-mimetic design for architecture built by 3D robotic printing
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 855-862
summary This work presents a parametric development for Architecture by 3D printing, through robotic arms. It addresses a bio-mimetic design approach based on morphological features of animal beings, and develops a spectrum of design possibilities for vertical pieces. The measurements arising from the process extrusion and the possibilities of eccentricity of the manufacturing cord are exposed. As well as variables for design, like the own gravitational restrictions and vertical growth, both in morphological and constructive logic, as a search for relationships closer to the natural world. Suggesting that the new deposition construction systems call for an architecture based on biological principles.
keywords Architecture, Parametric Design, Bio-mimetic, Robotics, 3D-Printed Construction
series SIGraDi
email
last changed 2021/07/16 11:53

_id cdrf2019_265
id cdrf2019_265
authors Yue Qi, Ruqing Zhong, Benjamin Kaiser, Long Nguyen,Hans Jakob Wagner, Alexander Verl, and Achim Menges
year 2020
title Working with Uncertainties: An Adaptive Fabrication Workflow for Bamboo Structures
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_25
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper presents and investigates a cyber-physical fabrication work-flow, which can respond to the deviations between built- and designed form in realtime with vision augmentation. We apply this method for large scale structures built from natural bamboo poles. Raw bamboo poles obtain evolutionarily optimized fibrous layouts ideally suitable for lightweight and sustainable building construction. Nevertheless, their intrinsically imprecise geometries pose a challenge for reliable, automated construction processes. Despite recent digital advancements, building with bamboo poles is still a labor-intensive task and restricted to building typologies where accuracy is of minor importance. The integration of structural bamboo poles with other building layers is often limited by tolerance issues at the interfaces, especially for large scale structures where deviations accumulate incrementally. To address these challenges, an adaptive fabrication process is developed, in which existing deviations can be compensated by changing the geometry of subsequent joints to iteratively correct the pose of further elements. A vision-based sensing system is employed to three-dimensionally scan the bamboo elements before and during construction. Computer vision algorithms are used to process and interpret the sensory data. The updated conditions are streamed to the computational model which computes tailor-made bending stiff joint geometries that can then be directly fabricated on-the-fly. In this paper, we contextualize our research and investigate the performance domains of the proposed workflow through initial fabrication tests. Several application scenarios are further proposed for full scale vision-augmented bamboo construction systems.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2020_183
id ecaade2020_183
authors Zhao, Jiangyang, Lombardi, Davide and Agkathidis, Asterios
year 2020
title Application of Robotic Technologies for the Fabrication Of Traditional Chinese Timber Joints
doi https://doi.org/10.52842/conf.ecaade.2020.2.351
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 351-360
summary The traditional Chinese building design was influenced by the climate and the sociogeographical conditions of the different regions in China. They were usually constructed out of wood relying on timber-joint based construction systems. Amongst the wide variety of the structural elements, the Dougong (bucket arch) is one of the most common components of traditional wooden framework buildings, presenting a high level of complexity. Parametric design and robotic technology enable new possibilities regarding its fabrication and application in contemporary architecture. Our paper will explore how the Dougong components could be reinvented through the use of parametric tools and robotic fabrication methods and thus applied to contemporary architectural structures. We will analyse and compare the properties of the original Dougong with the reinvented unit by using finite element analysis and digital optimization tools. Our findings will provide an insight into the traditional construction principles of the joint and how these can inform a design and fabrication framework for its application in contemporary buildings.
keywords Dougong joint; timber structures; parametric design; robotic fabrication; optimization algorithm
series eCAADe
email
last changed 2022/06/07 07:57

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id cdrf2019_36
id cdrf2019_36
authors Dan Luo, Joseph M. Gattas, and Poah Shiun Shawn Tan
year 2020
title Real-Time Defect Recognition and Optimized Decision Making for Structural Timber Jointing
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_4
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary Non-structural or out-of-grade timber framing material contains a large proportion of visual and natural defects. A common strategy to recover usable material from these timbers is the marking and removing of defects, with the generated intermediate lengths of clear wood then joined into a single piece of fulllength structural timber. This paper presents a novel workflow that uses machine learning based image recognition and a computational decision-making algorithm to enhance the automation and efficiency of current defect identification and rejoining processes. The proposed workflow allows the knowledge of worker to be translated into a classifier that automatically recognizes and removes areas of defects based on image capture. In addition, a real-time optimization algorithm in decision making is developed to assign a joining sequence of fragmented timber from a dynamic inventory, creating a single piece of targeted length with a significant reduction in material waste. In addition to an industrial application, this workflow also allows for future inventory-constrained customizable fabrication, for example in production of non-standard architectural components or adaptive reuse or defect-avoidance in out-of-grade timber construction.
series cdrf
email
last changed 2022/09/29 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_690426 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002