CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 629

_id ecaade2020_411
id ecaade2020_411
authors Muehlbauer, Manuel, Song, Andy and Burry, Jane
year 2020
title Smart Structures - A Generative Design Framework for Aesthetic Guidance in Structural Node Design - Application of Typogenetic Design for Custom-Optimisation of Structural Nodes
doi https://doi.org/10.52842/conf.ecaade.2020.1.623
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-632
summary Virtual prototypes enable performance simulation for building components. The presented research extended the application of generative design using virtual prototypes for interactive optimisation of structural nodes. User-interactivity contributed to the geometric definition of design spaces rather than the final geometric outcome, enabling another stage of generative design for the micro-structure of the structural node. In this stage, the micro-structure inside the design space was generated using fixed topology. In contrast to common optimisation strategies, which converge towards a single optimal outcome, the presented design exploration process allowed the regular review of design solutions. User-based selection guided the evolutionary process of design space exploration applying Online Classification. Another guidance mechanism called Shape Comparison introduced an intelligent control system using an inital image input as design reference. In this way, aesthetic guidance enabled the combined evaluation of quantitative and qualitative criteria in the custom-optimisation of structural nodes. Interactive node design extended the potential for shape variation of custom-optimized structural nodes by addressing the geometric definition of design spaces for multi-scalar structural optimisation.
keywords generative design; evolutionary computation; interactive machine learning; typogenetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_008
id caadria2020_008
authors Wang, Likai, Chen, Kian Wee, Janssen, Patrick and Ji, Guohua
year 2020
title Enabling Optimisation-based Exploration for Building Massing Design - A Coding-free Evolutionary Building Massing Design Toolkit in Rhino-Grasshopper
doi https://doi.org/10.52842/conf.caadria.2020.1.255
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 255-264
summary This paper presents an evolutionary design toolkit for performance-based building massing design optimisation. The toolkit is aimed to assist architects in exploring a wide range of building massing design alternatives guided by various performance objectives, thereby encouraging architects to incorporate evolutionary design optimisation for enriching design ideation at the outset of the design process. The toolkit is implemented in the Rhino-Grasshopper environment and includes components of a diversity-guided evolutionary algorithm and two pre-defined parametric models capable of generating a wide range of massing designs. The evolutionary algorithm can yield diverse design variants from the optimisation process and present more informative results with higher design differentiation. The pre-defined parametric models require minimal customisation from the architects. By using the toolkit, architects can readily explore high-performing building design with performance-based design optimisation with ease, and the coding-free optimisation workflow also streamlines the design process.
keywords evolutionary design; building massing design; performance-based design; design process; design exploration
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2020_423
id caadria2020_423
authors Erhan, Halil, Zarei, Maryam, Abuzuraiq, Ahmed M., Haas, Alyssa, Alsalman, Osama and Woodbury, Robert
year 2020
title FlowUI: Combining Directly-Interactive Design Modeling with Design Analytics
doi https://doi.org/10.52842/conf.caadria.2020.1.475
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 475-484
summary In a systems building experiment, we explored how directly manipulating non-parametric geometries can be used together with a real-time parametric performance analytics for informed design decision-making in the early phases of design. This combination gives rise to a design process where considerations that would traditionally take place in the late phases of design can become part of the early phases. The paper presents FlowUI, a prototype tool for performance-driven design that is developed in a collaboration with our industry partner as part of our design analytics research program. The tool works with and responds to changes in the design modeling environment, processes the design data and presents the results in design (data) analytics interfaces. We discuss the system's design intent and its overall architecture, followed by a set of suggestions on the comparative analysis of design solutions and design reports generation as integral parts of design exploration tasks.
keywords Non-Parametric Modeling; Performance-Driven Design; Design Analytics; Information Visualization
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_009
id caadria2020_009
authors Wang, Likai, Chen, Kian Wee, Janssen, Patrick and Ji, Guohua
year 2020
title Algorithmic generation of architectural Massing Models for building design optimisation - Parametric Modelling Using Subtractive and Additive Form Generation Principles
doi https://doi.org/10.52842/conf.caadria.2020.1.385
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 385-394
summary Using performance-based optimisation to explore unknown design solutions space has become widely acknowledged and considered an efficient approach to designing high-performing buildings. However, the lack of design diversity in the design space defined by the parametric model often confines the search of the optimisation process to a family of similar design variants. In order to overcome this weakness, this paper presents two parametric massing generation algorithms based on the additive and subtractive form generation principles. By abstracting the rule of these two principles, the algorithms can generate diverse building massing design alternatives. This allows the algorithms to be used in performance-based optimisation for exploring a wide range of design alternatives guided by various performance objectives. Two case studies of passive solar energy optimisation are presented to demonstrate the efficacy of the algorithm in helping architects achieve an explorative performance-based optimisation process.
keywords parametric massing algorithms; performance-based optimisation; design exploration; solar irradiation
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2020_260
id sigradi2020_260
authors Bhattacharya, Maharshi; Jung, Francisco
year 2020
title Multi-Mission Space Exploration Vehicle (MMSEV) Nosecone Design Optimization
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 260-266
summary This paper addresses ergonomic drawbacks in NASA’s modular Multi-Mission Space Exploration Vehicle’s (MMSEV) latest prototype, 2B’s nosecone, to propose new iteration based on considerations such as mass minimization, visibility maximization, and structural integrity. With 2B as a benchmark, and using computational tools typically used in the AEC industry to carry out FEA analysis, comparisons are made with potential design changes. The numerical and visual data such as weight, and stress distribution, provided by the benchmark analysis, served as metrics for comparison and redesign. In turn, this design development exercise attempts to bring together the different design approaches to design, held by human- factors designers and structural engineers.
keywords Form, Optimization, Finite Element Analysis, Space-Exploration Vehicle, Stress-Analysis
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2020_254
id caadria2020_254
authors Pei, Wanyu, LO, TianTian and Guo, Xiangmin
year 2020
title A Biofeedback Process: Detecting Architectural Space with the Integration of Emotion Recognition and Eye-tracking Technology
doi https://doi.org/10.52842/conf.caadria.2020.2.263
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 263-272
summary This paper coincides with the conference theme that people have gradually become a vital force influencing the environmental system. In the future, it is necessary to study the influence of not only the built environment on people but also people's feedback on environmental design. This study explores the ‎processes of interactive design using both emotion recognition and eye-tracking of users. By putting on wearable devices to roam and perceive in a virtual reality space, the physiological data of the users are collected in real-time and used to analyze their emotional responses and visual attention to the spaces. This method will provide an auxiliary way for non-architectural professional users to participate in architectural space design. At present, there is a lack of research on the comprehensive application of eye movement knowledge and emotional feedback in architectural space design. This integration will help professional designers to optimize the design of architectural space. For this paper, we review existing research and proposing an interactive design workflow that integrates eye tracking and emotion recognition. This workflow will help with the next stage of research to understand the design of a new International School of Design building.
keywords Perception detection; Architectural space environment; Interactive design; Virtual reality
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_248
id acadia20_248
authors Saha, Nirvik; Haymaker, John; Shelden, Dennis
year 2020
title Space Allocation Techniques (SAT)
doi https://doi.org/10.52842/conf.acadia.2020.1.248
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 248-257.
summary Architects and urban designers use space allocation to develop layouts constrained by project-specific attributes of spaces and relations between them. The space allocation problem (SAP) is a general class of computable problems that eluded automation due to combinatorial complexity and diversity of architectural forms. In this paper, we propose a solution to the space allocation problem using reinforcement learning (RL). In RL, an artificial agent interacts with a simulation of the design problem to learn the optimal spatial organization of a layout using a feedback mechanism based on project-specific constraints. Compared to supervised learning, where the scope of the design problem is restricted by the availability of prior samples, we developed a general approach using RL to address novel design problems, represented as SAP. We integrated the proposed solution to SAP with numerous geometry modules, collectively defined as the space allocation techniques (SAT). In this implementation, the optimization and generative modules are decoupled such that designers can connect the modules in various ways to generate layouts with desired geometric and topological attributes. The outcome of this research is a user-friendly, freely accessible Rhino Grasshopper (C#) plugin, namely, the Design Optimization Toolset or DOTs, a compilation of the proposed SAT. DOTs allows designers to interactively develop design alternatives that reconcile project-specific constraints with the geometric complexity of architectural forms. We describe how professional designers have applied DOTs in space planning, site parcellation, massing, and urban design problems that integrate with performance analysis to enable a holistic, semi-automated design exploration.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_526
id acadia20_526
authors Bruce, Mackenzie; Clune, Gabrielle; Culligan, Ryan; Vansice, Kyle; Attraya, Rahul; McGee, Wes; Yan Ng, Tsz
year 2020
title FORM{less}
doi https://doi.org/10.52842/conf.acadia.2020.1.526
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 526-535
summary Form{less} focuses on the creation of complex thin-shell concrete forms using robotically thermoformed plastic molds. Typically, similar molds would be created using the vacuum forming process, producing direct replications of the pattern. Creating molds with this process is not only time- and material-intensive but also costly if customization is involved. Thin-shell concrete forms often require a labor-intensive process of manually finishing the open-face surface. The devised process of thermoforming two nested molds allows the concrete to be cast in between, with finished surfaces on both sides. Molds made with polyethylene terephthalate glycol (PETG) allow the formwork to be reused and recycled. The research and fabrication work include the development of heating elements and the creation of the robotic process for forming the PETG. The PETG is manipulated via a robotic arm, with a custom magnetic end effector. The integration of robotics not only enables precision for manufacturing but also allows for replicability with unrestricted threedimensional deformation. The repeatable process allows for rapid prototyping and geometric customization. Design options are then simulated computationally using SuperMatterTools, enabling further design exploration of this process without the need for extensive physical prototyping. This research aims to develop a process that allows for the creation of complex geometries while reducing the amount of material waste used for concrete casting. The novelty of the process created by dynamically forming PETG allows for quick production of formwork that is both customizable and replicable. This method of creating double-sided building components is simulated at various scales of implementation.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202018305
id ijac202018305
authors McIntosh, Jacqueline; Bruno Marques and Robyn Harkness
year 2020
title Simulating impairment through virtual reality
source International Journal of Architectural Computing vol. 18 - no. 3, 284-295
summary Research on architectural technology for health care has rapidly increased in recent years; however, little research has been conducted on the use of virtual reality for simulating impairment. This exploratory research maps the experiences of people with impairments in the often-overlooked corridors and waiting rooms of an emergency department. It questions whether the experience of an impairment can be usefully simulated for empathetic design. While using participatory processes to develop a virtual reality simulation of waiting areas, this research applies three representative impairments and then surveys 30 architectural designers to find the emotional responses of the unimpaired to the design intervention. While this research is preliminary, it is particularly valuable for the comprehension of proposed designs during the early planning and design phases, without costly and time-consuming use of full participatory processes. It finds there is significant potential for the use of virtual reality as a technology to simulate the experiences of these spaces by individuals with impairment, enabling empathetic design, and offers direction for future research.
keywords Emergency department, virtual reality, architecture, participatory design, health care
series journal
email
last changed 2020/11/02 13:34

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2020_137
id ecaade2020_137
authors Webb, Nicholas, Hillson, James, Peterson, John Robert, Buchanan, Alexandrina and Duffy, Sarah
year 2020
title Documentation and Analysis of a Medieval Tracing Floor Using Photogrammetry, Reflectance Transformation Imaging and Laser Scanning
doi https://doi.org/10.52842/conf.ecaade.2020.2.209
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 209-218
summary The fifteenth-century tracing floor at Wells cathedral is an extremely rare survival in European architecture. Located in the roof space above the north porch, this plaster floor was used as a drawing and design tool by medieval masons, the lines and arcs inscribed into its surface enabling them to explore their ideas on a 1:1 scale. Many of these marks are difficult to see with the naked eye and existing studies of its geometry are reliant on manual retracing of its lines. This paper showcases the potential of digital surveying and analytical tools, namely photogrammetry, reflectance transformation imaging (RTI) and laser scanning, to extend our knowledge of the tracing floor and its use in the cathedral. It begins by comparing the recording processes and outputs of all three techniques, followed by a description of the digital retracing of the tracing floor to highlight lines and arcs on the surface. Finally, it compares these with digital surveys of the architecture of the cathedral cloister.
keywords digital heritage; photogrammetry; reflectance transformation imaging; laser scanning; medieval design
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2020_615
id sigradi2020_615
authors Borges, Marina Ferreira
year 2020
title Structural Flexibility and Space Articulation in Architectural Design Teaching
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 615-620
summary The separation between architectural design teaching and structural education corroborates the division of labor in professional practice that cannot support the development of dialectical relations between architects and engineers. Thus, the proposal of hybridization between architectural design teaching and structural education developed in this article presupposes a shift from the centrality given to the plastic and spatial principles of the architectural form to the development of approaches that are oriented towards the recognition of the material and constructive questions which aided by the parametric and structural behavior simulation tools allow the development of complex relationships based on tectonic procedural logic.
keywords Architectural design teaching, Structural education, Parametric design, Performance-based design
series SIGraDi
email
last changed 2021/07/16 11:52

_id acadia20_584
id acadia20_584
authors Brás, Catarina; Castelo-Branco, Renata; Menezes Leitao, António
year 2020
title Parametric Model Manipulation in Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2020.1.584
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 584-593.
summary Algorithmic design (AD) uses algorithms to describe architectural designs, producing results that are visual by nature and greatly benefit from immersive visualization. Having this in mind, several approaches have been developed that allow architects to access and change their AD programs in virtual reality (VR). However, programming in VR introduces a new level of complexity that hinders creative exploration. Solutions based in visual programming offer limited parameter manipulation and do not scale well, particularly when used in a remote collaboration environment, while those based in textual programming struggle to find adequate interaction mechanisms to efficiently modify existing programs in VR. This research proposes to ease the programming task for architects who wish to develop and experiment with collaborative textual-based AD in VR, by bringing together the user-friendly features of visual programming and the flexibility and scalability of textual programming. We introduce an interface for the most common parametric changes that automatically generates the corresponding code in the AD program, and a hybrid programming solution that allows participants in an immersive collaborative design experience to combine textual programming with this new visual alternative for the parametric manipulation of the design. The proposed workflow aims to foster remote collaborative work in architecture studios, offering professionals of different backgrounds the opportunity to parametrically interact with textual-based AD projects while immersed in them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
doi https://doi.org/10.52842/conf.acadia.2020.1.688
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_847
id sigradi2020_847
authors Guillen-Salas, Juan Carlos; Silva, Neander Furtado; Kallas, Luana Miranda Esper
year 2020
title Pavilion BIO-FADEN 1.0: Experimental study of design and manufacture with digital technologies of bionic prototype inspired by the fruit peels of fruit species present in the Central-Western Region of Brazil
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 847-854
summary This article aims to determine the possibilities and limitations of the digital design and digital fabrication process by section or 2D laser cut in the production of artifacts composed of double curvature faces inspired by the non-euclidean geometric shapes of fruits present in the Central-Western Region of Brazil: Annona Cherimolal/Annona Squamosa., Mauritia Flexuosa, Annona Muricata, and the Annona Squamosa. Where, the main conclusion is that a set of digital techniques, parametric design and digital fabrication by section or 2D laser cutting can enable the production of a bionic pavilion, in a complex and cellular form in Brasília - DF.
keywords Bionics, Generative Design, Prototype, Digital Fabrication, Building Envelope
series SIGraDi
email
last changed 2021/07/16 11:53

_id caadria2020_126
id caadria2020_126
authors Hsiao, Chi-Fu, Lee, Ching-Han, Chen, Chun-Yen and Chang, Teng-Wen
year 2020
title A Co-existing Interactive Approach to Digital Fabrication Workflow
doi https://doi.org/10.52842/conf.caadria.2020.1.105
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 105-114
summary In recent years, digital fabrication projects have explored how to best present complex spatial patterns. These patterns are generated by a series of function clusters and need to be separated into reasonable working sequences for workers. In the stage between design and fabrication, designers and workers typically spend considerable time communicating with each other and prototyping models in order to understand the complex geometry and joint methods of fabrication works. Through the potential of mixed reality technology, this paper proposes a novel form of co-existing interactive workflow that helps designers understand the morphing status of material composition and assists workers in achieving desired results. We establish this co-existing workflow mechanism as an interface between design and reality that includes a HoloLens display, a parametric algorithm, and gesture control identification. This paper challenges the flexibility between the virtual and reality and the interaction between precise parameters and natural gestures within an automation process.
keywords Co-existing interactive workflow; Digital fabrication; HoloLens; Digital twin; Prototype
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2020_023
id caadria2020_023
authors Liu, Chenjun
year 2020
title Double Loops Parametric Design of Surface Steel Structure Based on Performance and Fabrication
doi https://doi.org/10.52842/conf.caadria.2020.1.023
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 23-33
summary In intelligent epoch, automatic parameter design systems reduce the requirements of the skills needed to create objects. The creator only needs to select the most perceptual primitive form to automatically generate the data system that iterates to the most efficient solution. In this paper, a method of combining performance driven optimization with parametric design is proposed. The iterative evolution is under the control of performance loop and fabrication loop, which makes all the data provided by parametric design in a practical project available for exploring structural analysis and digital prefabrication. Related to the case of surface steel structure, parametric optimization is not limited to a set of shape types or design problems, it would be based on the generality and built-in characteristics of parametric modelling environment in the most convenient and flexible way. (Rolvink et al. 2010)And the given parameters would be fed back on geometric structure, performance indicators, and design variables, so that designers can easily and effectively coordinate and try different solutions. The system transforms the generated data into machine language so that the process including design, analysis, manufacturing, and construction can maintain the orthogonal persistence of the data.
keywords parametric design; component prefabrication; curved steel structure; performance driven
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac202018407
id ijac202018407
authors Marcelo Bernal, Victor Okhoya, Tyrone Marshall, Cheney Chen and John Haymaker
year 2020
title Integrating expertise and parametric analysis for a data-driven decision-making practice
source International Journal of Architectural Computing vol. 18 - no. 4, 424–440
summary This study explores the integration of expert design intuition and parametric data analysis. While traditional professional design expertise helps to rapidly frame relevant aspects of the design problem and produce viable solutions, it has limitations in addressing multi-criteria design problems with conflicting objectives. On the other hand, parametric analysis, in combination with data analysis methods, helps to construct and analyze large design spaces of potential design solutions and tradeoffs, within a given frame. We explore a process whereby expert design teams propose a design using their current intuitive and analytical methods. That design is then further optimized using parametric analysis. This study specifically explores the specification of geometric and material properties of building envelopes for two typically conflicting objectives: daylight quality and energy consumption. We compare performance of the design after initial professional design exploration, and after parametric analysis, showing consistently significant performance improvement after the second process. The study explores synergies between intuitive and systematic design approaches, demonstrating how alignment can help expert teams efficiently and significantly improve project performance.
keywords Performance analysis, parametric analysis, design space, design expertise, data analysis, optimization
series journal
email
last changed 2021/06/03 23:29

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_270697 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002