CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id caadria2020_423
id caadria2020_423
authors Erhan, Halil, Zarei, Maryam, Abuzuraiq, Ahmed M., Haas, Alyssa, Alsalman, Osama and Woodbury, Robert
year 2020
title FlowUI: Combining Directly-Interactive Design Modeling with Design Analytics
doi https://doi.org/10.52842/conf.caadria.2020.1.475
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 475-484
summary In a systems building experiment, we explored how directly manipulating non-parametric geometries can be used together with a real-time parametric performance analytics for informed design decision-making in the early phases of design. This combination gives rise to a design process where considerations that would traditionally take place in the late phases of design can become part of the early phases. The paper presents FlowUI, a prototype tool for performance-driven design that is developed in a collaboration with our industry partner as part of our design analytics research program. The tool works with and responds to changes in the design modeling environment, processes the design data and presents the results in design (data) analytics interfaces. We discuss the system's design intent and its overall architecture, followed by a set of suggestions on the comparative analysis of design solutions and design reports generation as integral parts of design exploration tasks.
keywords Non-Parametric Modeling; Performance-Driven Design; Design Analytics; Information Visualization
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_272
id caadria2020_272
authors Erhan, Halil, Abuzuraiq, Ahmed M., Zarei, Maryam, AlSalman, Osama, Woodbury, Robert and Dill, John
year 2020
title What do Design Data say About Your Model? - A Case Study on Reliability and Validity
doi https://doi.org/10.52842/conf.caadria.2020.1.557
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 557-567
summary Parametric modeling systems are widely used in architectural design. Their use for designing complex built environments raises important practical challenges when composed by multiple people with diverse interests and using mostly unverified computational modules. Through a case study, we investigate possible concerns identifiable from a real-world collaborative design setting and how such concerns can be revealed through interactive data visualizations of parametric models. We then present our approach for resolving these concerns using a design analytic workflow for examine their reliability and validity. We summarize the lessons learnt from the case study, such as the importance of an abundance of test cases, reproducible design instances, accessing and interacting with data during all phases of design, and seeking high cohesion and decoupling between design geometry and evaluation components. We suggest a systematic integration of design modeling and analytics for enhancing a reliable design decision-making.
keywords Model Reliability; Model Validity; Parametric Modeling; Design Analytics; Design Visualization
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2020_143
id ecaade2020_143
authors Ilyas, Sobia, Wang, Xinyue, Li, Wenting, Zhang, Zhuoqun, Wang, Tsung-Hsien and Peng, Chengzhi
year 2020
title Towards an Interactionist Model of Cognizant Architecture - A sentient maze built with swarm intelligence
doi https://doi.org/10.52842/conf.ecaade.2020.2.201
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 201-208
summary Cognizant Architecture is a term used to define sentient and smart structures broadly. In this paper, an 'Interactionist' model of cognizant architecture is proposed as a method of investigating the development process by inverting the conventional concept of maze design. The proposed 'Cognizant Maze' aims to achieve user-architecture micro-interactions through delighting the users, presenting a physical activity equally attractive to kids and adults alike, and activating mind-enticing visual effects. Like many previous innovations, nature is what inspires us in the maze-making process. In modelling the cognizant maze, we develop the concept and workflow of prototyping a form of swarm intelligence. We are particularly interested in exploring how simulated behaviours of swarm intelligence can be manifested in a maze environment for micro-interactions to take place. Combining parametric modelling and Arduino-based physical computing, our current interactive prototyping shows how the maze and its users can 'think, act and play' with each other, hence achieving an interactionist model of cognizant architecture. We reflect that the lessons learned from the Cognizant Maze experiment may lead to further development of cognizant architecture as a propagation of swarm intelligence through multi-layered micro-interactions.
keywords swarm intelligence; maze design; Micro-interactions; interactive prototyping; cognizant architecture
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2020_053
id ecaade2020_053
authors Ren, Yue, Chu, Jie and Zheng, Hao
year 2020
title Dynamic Symbiont - An Interactive Urban Design Method Combining Swarm Intelligence and Human Decisions
doi https://doi.org/10.52842/conf.ecaade.2020.1.383
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 383-392
summary Can a virtual city game be built by both the public and computer-based on real-site data? In the current process of deepening global connectivity, requirements for an effective urban design are no longer limited to functions or aesthetics, but a smart, dynamic complex with multi-interactions of data, group behaviours, and physical space. This paper introduces the logic of swarm intelligence and particle system for proposing a new urban design methodology. The platforms range from simulations that quantify the impact of the disruptive interventions of city activities to communicable collaboration between different users in a UI system, which creates virtual connections between optimized urbanscape and users. In the design system, based on the context data, the computer firstly simulates and optimizes the existing 2D activity joints between the people and analyzed the current spatial connection nodes into certain design rules. Through optimal programming for spatial connection and data iterations, the activity connection structures in the second simulation are abstracted into a set of interactive 3D topographic. The final data-visualization results are presented as a co-building megacity in a virtual construction game. Users can choose the virtual building unit types and intuitively influence the future urbanscape decision through virtual construction.
keywords Swarm Intelligence; Particle System; Digital Simulation; Human-Machine Interaction; Data Visualization
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
doi https://doi.org/10.52842/conf.acadia.2020.1.516
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2022_106
id sigradi2022_106
authors Pereira Espíndola, Fábio; Belluzzo de Campos, Gisela
year 2022
title Ubiquent Narratives for the Design of Natural and Invisible Interfaces
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 629–638
summary The article proposes to explore the concepts of storytelling (Lupton, 2020 and Xavier, 2015) and ubiquity (Santaella, 2013 and Santos, 2021) applied to the design of natural and invisible interfaces (Benyon, 2011). With Natural Interface it is possible to interact with devices directly, without needing the help of a mouse or keyboard. To do so, it presents as a case study the project “Criatura de Luz” (2015), by Estúdio Guto Requena, carried out to compose the new facade of the WZ Hotel (Sao Paulo). The purpose of this research is to understand the role of the designer in the creation of interfaces that are not only interactive, but that begin to propose immersive and ubiquitous narratives in design projects and the method for this analysis will be the case study from the design perspective as storytelling proposed by Lupton (2020). The aim is to do exploratory research to provide greater familiarity with the problem.
keywords Storytelling. ubiquitous computing. Interface design. Natural and invisible interfaces
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2020_167
id caadria2020_167
authors Stouffs, Rudi and Li, Andrew
year 2020
title Learning from Users and their Interaction with a Dual-interface Shape-grammar Implementation
doi https://doi.org/10.52842/conf.caadria.2020.2.153
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 153-162
summary We present a shape grammar implementation with two new characteristics. One is that it is visual and directly manipulable: users draw the shapes and rules in a modeling application. The other characteristic is advanced technical capabilities, such as non-visual attributes and higher-order elements like surfaces. It consists of three components running in Rhinoceros3d. We also report on workshops that introduced the implementation.
keywords shape grammars; interaction; implementation
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2020_099
id caadria2020_099
authors Tu, Chun Man and Hou, June Hao
year 2020
title After Abstraction, Before Figuration - Exploring the Potential Development of Form Re-topology and Evolution Reapplication with Three-dimensional Point Cloud Model Generation Logic.
doi https://doi.org/10.52842/conf.caadria.2020.2.517
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 517-526
summary In the era of three-dimensional (3D) informatics, the 3D point cloud modeling algorithm has the potential to further develop. In this study, we attempt to eliminate the limitations of the traditional reverse modeling method and directly turn point cloud data into the material for innovative architectural design by integrating 3D point cloud modeling into the CAD/CAM platform(Rhino/Grasshopper) most widely used by parametric designers. In this way, the randomly ordered point cloud model can be regenerated and reordered according to the designer's requirements. In addition, point cloud data can be spatially segmented and morphologically evolved according to the designer's preferences to construct a 3D model with higher efficiency and more dynamic real-time adjustment compared with the triangular mesh model. Moreover, when a computer vision technique is integrated into the point cloud design process, the point cloud model can be further used to more efficiently achieve rapid visualization, artisticization, and form adjustment. Therefore, point cloud modeling can not only be applied to the spatial structure presentation of building information modeling(BIM) but also can provide further opportunities for creative architectural design.
keywords Three-dimensional Point-cloud Model; Computer Vision; Point Set Registration; Topology Optimization; Regeneration
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2020_443
id caadria2020_443
authors Abuzuraiq, Ahmed M. and Erhan, Halil
year 2020
title The Many Faces of Similarity - A Visual Analytics Approach for Design Space Simplification
doi https://doi.org/10.52842/conf.caadria.2020.1.485
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 485-494
summary Generative design methods may involve a complex design space with an overwhelming number of alternatives with their form and design performance data. Existing research addresses this complexity by introducing various techniques for simplification through clustering and dimensionality reduction. In this study, we further analyze the relevant literature on design space simplification and exploration to identify their potentials and gaps. We find that the potentials include: alleviating the choice overload problem, opening up new venues for interrelating design forms and data, creating visual overviews of the design space and introducing ways of creating form-driven queries. Building on that, we present the first prototype of a design analytics dashboard that combines coordinated and interactive visualizations of design forms and performance data along with the result of simplifying the design space through hierarchical clustering.
keywords Visual Analytics; Design Exploration; Dimensionality Reduction; Clustering; Similarity-based Exploration
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia20_74
id acadia20_74
authors Bucklin, Oliver; Born, Larissa; Körner, Axel; Suzuki, Seiichi; Vasey, Lauren; T. Gresser, Götz; Knippers, Jan; Menges,
year 2020
title Embedded Sensing and Control
doi https://doi.org/10.52842/conf.acadia.2020.1.074
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 74-83.
summary This paper investigates an interactive and adaptive control system for kinetic architectural applications with a distributed sensing and actuation network to control modular fiber-reinforced composite components. The aim of the project was to control the actuation of a foldable lightweight structure to generate programmatic changes. A server parses input commands and geometric feedback from embedded sensors and online data to drive physical actuation and generate a digital twin for real-time monitoring. Physical components are origami-like folding plates of glass and carbon-fiber-reinforced plastic, developed in parallel research. Accelerometer data is analyzed to determine component geometry. A component controller drives actuators to maintain or move towards desired positions. Touch sensors embedded within the material allow direct control, and an online user interface provides high-level kinematic goals to the system. A hierarchical control system parses various inputs and determines actuation based on safety protocols and prioritization algorithms. Development includes hardware and software to enable modular expansion. This research demonstrates strategies for embedded networks in interactive kinematic structures and opens the door for deeper investigations such as artificial intelligence in control algorithms, material computation, as well as real-time modeling and simulation of structural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_511
id ecaade2020_511
authors Maierhofer, Mathias, Ulber, Marie, Mahall, Mona, Serbest, Asli and Menges, Achim
year 2020
title Designing (for) Change - Towards adaptivity-specific architectural design for situational open Environments
doi https://doi.org/10.52842/conf.ecaade.2020.2.575
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 575-584
summary The introduction of cybernetic principles to the architectural discourse some 50 years ago stimulated a new notion of buildings as dynamic and under-specified systems. Although their traditional conception as static and deterministic objects has remained predominant to this day, concepts for adaptive architecture capable of interacting with their surroundings and occupants have gained renewed attention in recent decades. However, investigations so far have largely concentrated on small-scale applications or individual adaptation strategies. The notion of situational open Environments, as argued in this paper, provides a framework through which adaptivity can be conceived and explored more holistically as well as on an inhabitable scale. Environments reject deterministic design and adaptation solutions and hence call for integrative and interactive design strategies that not only allow for the exploration of particularly adaptable (i.e. underspecified) architectural morphologies, but also for the communication and negotiation during their further development beyond deployment. In respect thereof, this paper discusses the potentials and implications of computational (design) strategies, meaning the agencies of buildings, designers, residents, and surroundings. The presented research originates from the author's involvement in an interdisciplinary research project centered around the development of an adaptive high-rise building that incorporates various adaptation strategies.
keywords Adaptive Architecture; Architectural Environment; Computational Design; Agent-based Modeling; Architecture Theory; Cybernetics
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2021_067
id ecaade2021_067
authors Weissenböck, Renate
year 2021
title Augmented Quarantine - An experiment in online teaching using augmented reality for customized design interventions
doi https://doi.org/10.52842/conf.ecaade.2021.2.095
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 95-104
summary This paper presents experimental research about using Augmented Reality (AR) for interactive design processes, exploring a spatial "live" design method taking place in an overlay of real space and digital models. It discusses the processes and outcomes of a seminar undertaken at Graz University of Technology in winter term 2020/2021. Due to the Covid-19 pandemic, the course was taught online, and conceptualized to allow students the biggest possible learning experience during the lockdown. Ensuring accessibility to all participants, the seminar was based on the use of ubiquitous devices. The implementation of newly developed software, such as "Fologram", enabled the students to use AR systems at home with their personal computers and smartphones. The task of the course was to design customized interventions for the students' own domestic spaces, reacting to changing conditions and needs during the lockdown. The employed workflow was driven by an instant connection between 3D-modeling (Rhinoceros3D), parametric design (Grasshopper) and holographic immersion (Fologram).
keywords augmented reality; remote collaboration; interactive design; customization; online teaching
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2020_215
id ecaade2020_215
authors Zhu, Yuehan, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Integrated Co-designing Using Building Information Modeling and Mixed Reality with Erased Backgrounds for Stock Renovation
doi https://doi.org/10.52842/conf.ecaade.2020.1.153
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 153-160
summary The stock renovation has become an important area of study. As customized design becomes increasingly popular, the design methods with occupants' participation are increasingly valued. The designers need an intuitive, understandable design method that allows non-professional occupants can also participate in the design process. Therefore, the proposed system explores the applicability of integrating the Building Information Modeling (BIM) model into the Mixed Reality (MR) environment to display realistic and interactive design plans. Occupants who involved in the renovation design wearing head mounted display (HMD) would experience the same MR environment. All of them can use gestures to interact with each other and control all the virtual structures and objects. This MR experience can help users to better understand other's intentions, and they can evaluate the design plans more easily. This paper will introduce a prototype of the integrated co-designing system using multiple HMDs connected in a local area network (LAN).
keywords Mixed Reality; Diminished Reality; Building Information Modeling; Co-Designing; Stock Renovation
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2020_012
id caadria2020_012
authors Chatzi, Anna-Maria and Wesseler, Lisa-Marie
year 2020
title OGOS+ - A Tool to Visualize Densification potential
doi https://doi.org/10.52842/conf.caadria.2020.1.773
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 773-782
summary OGOS+ is a GIS data-based tool, which would offer urban planners, architects, and researchers visualisations of potential building mass in the form of 3D models. It compares the height of existing buildings to the maximum permitted height by German zoning law and calculates the potential building mass. To ensure minimum building footprints it only calculates the densification potential on top of existing buildings. It summarises information of the building potential for future utilisation. The goal is an increase of urban density achieved with micro interventions.
keywords Urban densification; City Information Modeling and GIS; Big Data and Analytics in Architecture
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2020_991
id sigradi2020_991
authors Gomez, Paula; Hadi, Khatereh; Kemenova, Olga; Swarts, Matthew
year 2020
title Spatiotemporal Modeling of COVID-19 Spread in Built Environments
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 991-996
summary This research proposes a Spatiotemporal Modeling approach to understand the role of architecture, specifically the built environment, in the COVID-19 pandemic. The model integrates spatial and temporal parameters to calculate the probability of spread of and exposure to SARS-CoV-2 virus (responsible of COVID-19 disease) due to the combination of four aspects: Spatial configuration, organizational schedules, people’s behavior, and virus characteristics. Spatiotemporal Modeling builds upon the current models of building analytics for architecture combined with predictive models of COVID-19 spread. While most of the current research on COVID-19 spread focuses on mathematical models at regional scales and the CDC guidelines emphasizing on human behavior, our research focuses on the role of buildings in this pandemic, as the intermediate mechanism where human and social activities occur. The goal is to understand the most significant parameters that influence the virus spread within built environments, including human-to-human, fomite (surface-to-human), and airborne ways of transmission, with the purpose of providing a comprehensive parametric model that may help identify the most influential design and organizational decisions for controlling the pandemic. The proof-of-concept study is a healthcare facility.
keywords Spatiotemporal modeling, Agent-based simulation, COVID-19, Virus spread, Built environments, Human behavior, Social distancing
series SIGraDi
email
last changed 2021/07/16 11:53

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id cdrf2019_27
id cdrf2019_27
authors Chuan Liu, Jiaqi Shen, Yue Ren, and Hao Zheng
year 2020
title Developing a Digital Interactive Fabrication Process in Co-existing Environment
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_3
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary In the stage of prototype practice, the maker mainly works by himself, but it needs to test and adapt to find correct fabrication method when maker didn’t have clearly fabrication description. Therefore, rapid prototyping is very important in the prototype practice of the maker. “Design- Fabrication-Assembly” (DFA)- an integration prototyping process which helps designers in creating kinetic skin by following a holistic process. However, DFA lacks a medium for communication between design, fabrication and assembly status. This paper proposes a solution called co-existing Fabrication System (CoFabs) by combining multiple sensory components and visualization feedbacks. We combine mixed reality (MR) and the concept of digital twin (DT)–a device that uses a virtual interface to control a physical mechanism for fabrication and assembly. By integrating virtual and physical, CoFab allows designers using different methods of observation to prototype more rigorously and interactively correct design decisions in real-time.
series cdrf
email
last changed 2022/09/29 07:51

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2020_408
id ecaade2020_408
authors Grasser, Alexander, Parger, Alexandra and Hirschberg, Urs
year 2020
title Pervasive Collaboration and Tangible Complexity in Realtime Architecture
doi https://doi.org/10.52842/conf.ecaade.2020.1.393
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 393-400
summary This paper reports on an ongoing experiment in design collaboration: an open collaborative realtime environment that enables participatory design activities in spatially distributed teams. The project builds on online platforms and open source ways of sharing design ideas, but also on recent advances in shared augmented reality enabled by game engine technology. Furthermore it focuses on combinatorial design of collaborative objects: the models shared in this way are not just geometric forms, but informed systems of parts with a procedural or combinatorial logic, an assembly strategy. By pooling and aggregating such intelligent assembly systems in a shared online realtime design space we are trying to move towards pervasive collaboration in architecture. Authors taking part in the project are united in a shared persistent design space and can design collectively. They experience what we refer to as tangible complexity: a playful mode of aggregating and combining design ideas of different authors. We argue that this pervasive collaboration can lead to novel types of complexity: an architecture of socially augmented formations.
keywords Collaborative Objects; Realtime Architecture; Tangible Complexity
series eCAADe
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_507105 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002