CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id acadia20_164p
id acadia20_164p
authors Lange, Christian; Ratoi, Lidia; Co Lim, Dominic; Hu, Jason; Baker, David M.; Yu, Vriko; Thompson, Phil
year 2020
title Reformative Coral Habitats
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 164-169
summary Coral reefs are some of the most diverse ecologies in the marine world. They are the habitat to tens of thousands of different marine species. However, these wildlife environments are endangered across the globe. Recent research estimates that around 75 percent of the remaining coral reefs are currently under threat. In 2018 after a devastating storm, Hong Kong lost around 80% of its existing corals. Consequently, a team consisting of marine biologists and architects at The University of Hong Kong has developed a series of performative structures that have been deployed in the city's waters in July 2020, intending to aid new coral growth over the coming years. The project was commissioned by the Agriculture, Fisheries, and Conservation Department (AFCD) and is part of an ongoing active management measure for coral restoration in Hoi Ha Wan Marine Park in Hong Kong. The following objectives were defined as part of the design and fabrication research of the project. To develop a design strategy that builds on the concept of biomimicry to allow for complex spaces to occur that would provide attributes against the detachment of the inserted coral fragment, hence could enhance a diverse marine life specific to the context of the cities water conditions. To generate an efficient printing path that accommodates the specific morphological design criteria and ensures structural integrity and the functional aspects of the design. To develop an efficient fabrication process with a DIW 3D printing methodology that considers warping, shrinkage, and cracking in the clay material. The research team developed a method that combined an algorithmic design approach for the design of different geometries with a digital additive manufacturing process utilizing robotic 3D clay printing. The overall fabrication strategy for the complex and large pieces sought to ensure structural longevity, optimize production time, and tackle the involved double-sided printing method. Overall, 128 tiles were printed, covering roughly 40sqm of the seabed.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id sigradi2020_143
id sigradi2020_143
authors Mariano, Pedro Oscar Pizzetti; Pereira, Alice Theresinha Cybis
year 2020
title Parametric Design Process of Facade Elements with Characteristics of Fractal Geometry: Development, Evaluation and Application
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 143-148
summary This article deals with the use of the characteristics of fractal linear geometry and the different knowledge related to the application of its patterns in architectural elements, considering their compositional potentialities. For this, a theoretical and practical trajectory was developed, such as understanding the characteristics of fractal geometry and the existing software and methods for its reproduction. As a result, a parametric process was developed that allows to recreate fractal patterns in architectural elements, making it possible to identify the necessary steps for their elaboration, identifying the potentialities of their use and the skills necessary to reproduce similar parametric processes.
keywords Fractal geometry, Dimension D, Parametric process, Design Process
series SIGraDi
email
last changed 2021/07/16 11:48

_id acadia20_226p
id acadia20_226p
authors Borhani, Alireza; Kalantar, Negar
year 2020
title Interlocking Shell
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 226-231
summary With a specific focus on robotic stereotomy, two full-scale vault structures were designed to explore the potential of self-standing building structures made from interlocking components; these structures were fabricated with a track-mounted industrial-scale robot (ABB 4600). To respond to the economic affordances of robotic subtractive cutting, all uniquely shaped structural modules came from one block of material (48"" x96"" x36""). Through the discretization of curvilinear tessellated vault surfaces into a limited number of uniquely shaped modules with embedded form-fitting connectors, the project exhibited the potential for programming a robot to cut ruled surfaces to produce freeform shells of any kind. Representing nearly zero-waste construction, the developed technology can potentially be used for self-supporting emergency shelters and field medical clinics, facilitating easy shipping and speedy assembly. Without using any scaffolding, a few people can erect and dismantle an entire mortar-free structure at the construction site. The disassembled structure occupies minimal space in storage, and the structure’s pieces can be transported to the site in stacks. Robot milling is a common technique for removing material to transform a block into a sculptural shape. Unlike milling techniques that produce significant waste, we used a hotwire that sliced through a Geofoam block to create almost no waste pieces. Since the front side of every module was concurrent with the backside of the next one, such a decision allowed to operate just one cut per front side of each module. In this case, by having three cuts, two neighboring modules were fabricated. The form of the structure and its modules emerged from the constraints of the fabrication technique, aiming to establish a feedback loop between geometry, material, simulation, and tool. By cross-referencing geometric data across Grasshopper, a customized tessellation script was made to breakdown a vault into its modular ruled surface constructs.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_74
id acadia20_74
authors Bucklin, Oliver; Born, Larissa; Körner, Axel; Suzuki, Seiichi; Vasey, Lauren; T. Gresser, Götz; Knippers, Jan; Menges,
year 2020
title Embedded Sensing and Control
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 74-83.
doi https://doi.org/10.52842/conf.acadia.2020.1.074
summary This paper investigates an interactive and adaptive control system for kinetic architectural applications with a distributed sensing and actuation network to control modular fiber-reinforced composite components. The aim of the project was to control the actuation of a foldable lightweight structure to generate programmatic changes. A server parses input commands and geometric feedback from embedded sensors and online data to drive physical actuation and generate a digital twin for real-time monitoring. Physical components are origami-like folding plates of glass and carbon-fiber-reinforced plastic, developed in parallel research. Accelerometer data is analyzed to determine component geometry. A component controller drives actuators to maintain or move towards desired positions. Touch sensors embedded within the material allow direct control, and an online user interface provides high-level kinematic goals to the system. A hierarchical control system parses various inputs and determines actuation based on safety protocols and prioritization algorithms. Development includes hardware and software to enable modular expansion. This research demonstrates strategies for embedded networks in interactive kinematic structures and opens the door for deeper investigations such as artificial intelligence in control algorithms, material computation, as well as real-time modeling and simulation of structural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_203
id sigradi2020_203
authors Chiarella, Mauro; Gronda, Ma. Luciana; Veizaga, Martín W.
year 2020
title FLEXO.IN-FORM. Laminary envelopes to active flexion through geometric-material optimization processes
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 203-208
summary Flexo.In-Form. is a prototype derived from an experimental exercise to verify the structural effort of active flexion. Bending behavior is used as a design tool applied to structures that base their geometry on the elastic deformation of flat elements. Through "Integrative Processes" and a "Performance-Oriented Design Approach", the operational relationship between active mechanical mechanisms, material performance and geometric design has been enhanced. The proposed geometric and material optimization process extends the experiences with physical models of complex shapes through computational numerical calculation and its possibilities of simulation and digital evaluation.
keywords Performance, Form-finding, Parametric Design, Physical Simulation, Digital Manufacturing
series SIGraDi
email
last changed 2021/07/16 11:48

_id caadria2020_361
id caadria2020_361
authors Geht, Alexander, Weizmann, Michael, Grobman, Yasha Jacob and Tarazi, Ezri
year 2020
title Horizontal Forming in Additive Manufacturing: Design and Architecture Perspective
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 203-212
doi https://doi.org/10.52842/conf.caadria.2020.1.203
summary Extrusion based three-dimensional additive manufacturing technology forms objects by driving the material through a nozzle depositing a linear structure through vector-building blocks called roads. In a common 3-axis system, the roads are stacked layer upon layer for forming the final object. However, forming overhanging geometry in this way requires additional support structures increasing material usage and effective printing time. The paper presents a novel Horizontal forming (HF) approach and method for forming overhanging geometry, HF is a new extrusion-based AM approach that allows rapid and stable forming of horizontal structures without additional support in 3-axis systems. This approach can provide new design and manufacturing possibilities for extrusion AM, with emphasis on medium and large-scale AM. HF can affect the outcome's aesthetic and mechanical properties. Moreover, it can significantly accelerate the production process and reduce material waste. The present paper maps the influence of various parameters employed in the HF method, providing a deeper understanding of the printing process. Additionally, it explores and demonstrates the potential functional and aesthetic characteristics that can be achieved with HF for industrial design and architectural products.
keywords Additive manufacturing; Support; Horizontal forming (HF); Extrusion-based system; Fused granulate forming (FGF)
series CAADRIA
email
last changed 2022/06/07 07:51

_id artificial_intellicence2019_207
id artificial_intellicence2019_207
authors Hao Zheng
year 2020
title Form Finding and Evaluating Through Machine Learning: The Prediction of Personal Design Preference in Polyhedral Structures
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2025)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_13
summary 3D Graphic Statics (3DGS) is a geometry-based structural design and analysis method, helping designers to generate 3D polyhedral forms by manipulating force diagrams with given boundary conditions. By subdividing 3D force diagrams with different rules, a variety of forms can be generated, resulting in more members with shorter lengths and richer overall complexity in forms. However, it is hard to evaluate the preference toward different forms from the aspect of aesthetics, especially for a specific architect with his own scene of beauty and taste of forms. Therefore, this article proposes a method to quantify the design preference of forms using machine learning and find the form with the highest score based on the result of the preference test from the architect. A dataset of forms was firstly generated, then the architect was asked to keep picking a favorite form from a set of forms several times in order to record the preference. After being trained with the test result, the neural network can evaluate a new inputted form with a score from 0 to 1, indicating the predicted preference of the architect, showing the possibility of using machine learning to quantitatively evaluate personal design taste.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id sigradi2020_863
id sigradi2020_863
authors Jalkh, Heidi
year 2020
title Morpho-Active Materials: Fabricating auxetic structures with bioinspired behavior
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 863-869
summary This practice-led research lies at the intersection of design, craft, materials science, and biology. Inspired by the responsive mechanism of plant’s biological actuators, and Nature's outstanding capacity of attaining maximal performances while using minimum resources. This thesis explores how to achieve a higher level of integration between the generation of form and behavior with its materialization and fabrication.This research proposes to endow a conventional laminar elastic material with unconventional behavior. Taking as inspiration plants biological actuators, which allows them to sense and adapt according to different environmental stimuli. We explored, developed, and fabricated a range of cellular structures (and in particular auxetics) that have out of the plane shape morphing capabilities, displaying a distinctive behavior in response to a design pattern (spatial cell arrangement) and an actuating force.The final design is a material/geometry-based actuator with reversible behavior, an active material with integrated tunable and responsive capacity which provides the capabilities to sense, adapt and respond to external stimuli within the structure of the material.
keywords Bioinspired, Auxetic Materials, Shape-shifting, Active matter, Soft matter
series SIGraDi
email
last changed 2021/07/16 11:53

_id ijac202018106
id ijac202018106
authors Koronaki, Antiopi; Paul Shepherd and Mark Evernden
year 2020
title Rationalization of freeform space-frame structures: Reducing variability in the joints
source International Journal of Architectural Computing vol. 18 - no. 1, 84-99
summary In recent years, the application of space-frame structures on large-scale freeform designs has significantly increased due to their lightweight configuration and the freedom of design they offer. However, this has introduced a level of complexity into their construction, as doubly curved designs require non-uniform configurations. This article proposes a novel computational workflow that reduces the construction complexity of freeform space-frame structures, by minimizing variability in their joints. Space-frame joints are evaluated according to their geometry and clustered for production in compliance with the tolerance requirements of the selected fabrication process. This provides a direct insight into the level of customization required and the associated construction complexity. A subsequent geometry optimization of the space-frame’s depth minimizes the number of different joint groups required. The variables of the optimization are defined in relation to the structure’s curvature, providing a direct link between the structure’s geometry and the optimization process. Through the application of a control surface, the dimensionality of the design space is drastically reduced, rendering this method applicable to large-scale projects. A case study of an existing structure of complex geometry is presented, and this method achieves a significant reduction in the construction complexity in a robust and computationally efficient way.
keywords Geometry optimization, space-frame structures, joint, fabrication process, construction, cost, clustering, control surface
series journal
email
last changed 2020/11/02 13:34

_id caadria2020_257
id caadria2020_257
authors Lu, Yao, Birol, Eda Begum, Johnson, Colby, Hernandez, Christopher and Sabin, Jenny
year 2020
title A Method for Load-responsive Inhomogeneity and Anisotropy in 3D Lattice Generation Based on Ellipsoid Packing
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 395-404
doi https://doi.org/10.52842/conf.caadria.2020.1.395
summary 3D lattice structures are gaining widespread application in multiple design fields. While the number of projects that utilize load-responsive inhomogeneous and anisotropic 3D lattices in design applications increase, accessible and effective algorithmic generation methodologies remain lacking. This paper addresses this gap by introducing a novel computational method for controlled load-responsive inhomogeneity and anisotropy in 3D lattice generation. The presented methods employ a responsive Ellipsoid Packing algorithm informed by the global tensor field of the packing geometry, followed by a Kissing Ellipsoids algorithm to generate the lattice. Load specific anisotropy and inhomogeneity in the ellipsoid packing process is achieved in response to the magnitude and directionality values of the global tensor field and specialized responsive lattices are easily generated. The proposed Ellipsoid Packing workflow is compared to various common lattice generation algorithms. Results show improvement in mechanical performance.
keywords 3D lattice; ellipsoid packing; bio-inspired; algorithmic design; ceramic brick
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2021_011
id ecaade2021_011
authors Nováková, Kateřina and Vele, Jiří
year 2021
title Prvok - An experiment with 3D printing large doublecurved concrete structure
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 137-144
doi https://doi.org/10.52842/conf.ecaade.2021.2.137
summary In this experimental research project we report on the manufacturing process of the first full-size 3D printed concrete structure in our country. The house was 3D printed by an ABB IRB 6700 robot whose range we made fit with the requirements for transportation size and also, its range determined the size and geometry of the house. During the transformation process from sketch to code we involved students to apply computational design methods. We designed the main load bearing structure which had to be thinnest and lightest possible together with its insulation features and printability. We were aware of the world-wide research in this field started by NASA centennial Challenge called 3D-printed-habitat [Roman,2020] as well as start-ups derived from this research [1,2,3,4]. During the project, we investigated the following matters: (1) the relationship between geometry of the wall in model and in practice (2), setting of the robot and the mixture; and (3) stress test of the wall. With the results of the test we aimed at contribution to standardisation of 3D printed structures in ISO/ASTM 52939:2021. The finalized structure, named "Prvok", was made to prove printability of the mixture and stability of the design.
keywords 3D printing; robot; concrete; grasshopper; experiment; house
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2020_372
id ecaade2020_372
authors Oktan, Selin and Vural, Serbülent
year 2020
title A Case Study on the Relationship between Mathematics, Geometry and Design
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 489-494
doi https://doi.org/10.52842/conf.ecaade.2020.1.489
summary Geometry and mathematics have always been disciplines related with architecture. As the geometry gets more complex, dealing with it becomes more intuitive. This study focuses on an exercise process, carried out with the third term undergraduate students, that searches complex geometries. The aim of this study is to make the students think over mathematical expressions as a design form and to improve their computational thinking abilities. This study takes the use of mathematics and geometry one step further in the architectural education process, and discusses that forms are not just visual values, and that their mathematical values can be used as parameters in the design process. In this context, complex three-dimensional objects that are difficult to model in three dimensions can be modelled and developed with parameters.
keywords algebraic surfaces; computational design; mathematical definitions; geometry
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac202018405
id ijac202018405
authors Olga Mesa, Saurabh Mhatre and Dan Aukes
year 2020
title CREASE: Synchronous gait by minimizing actuation through folded geometry
source International Journal of Architectural Computing vol. 18 - no. 4, 385–403
summary The Age of the Fourth Industrial Revolution promises the integration and synergy of disciplines to arrive at meaningful and comprehensive solutions. As computation and fabrication methods become pervasive, they present platforms for communication. Value exists in diverse disciplines bringing their approach to a common conversation, proposing demands, and potentials in response to entrenched challenges. Robotics has expanded recently as computational analysis, and digital fabrication methods are more accurate and reliable. Advances in functional microelectromechanical components have resulted in the design of new robots presenting alternatives to traditional ambulatory robots. However, most examples are the result of intense computational analysis necessitating engineering expertise and specialized manufacturing. Accessible fabrication methods like laminate techniques propose alternatives to new robot morphologies. However, most examples remain overly actuated without harnessing the full potential of folds for locomotion. Our research explores the connection between origami structures and kinematics for the generation of an ambulatory robot presenting efficient, controlled, and graceful gait with minimal use of components. Our robot ‘Crease’ achieves complex gait by harnessing kinematic origami chains rather than relying on motors. Minimal actuation activates the folds to produce variations in walk and direction. Integrating a physical iterative process with computational analysis, several prototypes were generated at different scales, including untethered ones with sensing and steering that could map their environment. Furthering the dialogue between disciplines, this research contributes not only to the field of robotics but also architectural design, where efficiency, adjustability, and ease of fabrication are critical in designing kinetic elements.
keywords Digitals fabrication, robotics, origami, laminate construction, smart geometry, digital manufacturing and materials, smart materials
series journal
email
last changed 2021/06/03 23:29

_id cdrf2019_103
id cdrf2019_103
authors Runjia Tian
year 2020
title Suggestive Site Planning with Conditional GAN and Urban GIS Data
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_10
summary In architecture, landscape architecture, and urban design, site planning refers to the organizational process of site layout. A fundamental step for site planning is the design of building layout across the site. This process is hard to automate due to its multi-modal nature: it takes multiple constraints such as street block shape, orientation, program, density, and plantation. The paper proposes a prototypical and extensive framework to generate building footprints as masterplan references for architects, landscape architects, and urban designers by learning from the existing built environment with Artificial Neural Networks. Pix2PixHD Conditional Generative Adversarial Neural Network is used to learn the mapping from a site boundary geometry represented with a pixelized image to that of an image containing building footprint color-coded to various programs. A dataset containing necessary information is collected from open source GIS (Geographic Information System) portals from the city of Boston, wrangled with geospatial analysis libraries in python, trained with the TensorFlow framework. The result is visualized in Rhinoceros and Grasshopper, for generating site plans interactively.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2020_137
id ecaade2020_137
authors Webb, Nicholas, Hillson, James, Peterson, John Robert, Buchanan, Alexandrina and Duffy, Sarah
year 2020
title Documentation and Analysis of a Medieval Tracing Floor Using Photogrammetry, Reflectance Transformation Imaging and Laser Scanning
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 209-218
doi https://doi.org/10.52842/conf.ecaade.2020.2.209
summary The fifteenth-century tracing floor at Wells cathedral is an extremely rare survival in European architecture. Located in the roof space above the north porch, this plaster floor was used as a drawing and design tool by medieval masons, the lines and arcs inscribed into its surface enabling them to explore their ideas on a 1:1 scale. Many of these marks are difficult to see with the naked eye and existing studies of its geometry are reliant on manual retracing of its lines. This paper showcases the potential of digital surveying and analytical tools, namely photogrammetry, reflectance transformation imaging (RTI) and laser scanning, to extend our knowledge of the tracing floor and its use in the cathedral. It begins by comparing the recording processes and outputs of all three techniques, followed by a description of the digital retracing of the tracing floor to highlight lines and arcs on the surface. Finally, it compares these with digital surveys of the architecture of the cathedral cloister.
keywords digital heritage; photogrammetry; reflectance transformation imaging; laser scanning; medieval design
series eCAADe
email
last changed 2022/06/07 07:58

_id artificial_intellicence2019_295
id artificial_intellicence2019_295
authors Xiang Wang, Kam-Ming Mark Tam, Alexandre Beaudouin-Mackay,Benjamin Hoyle, Molly Mason, Zhe Guo, Weizhe Gao, Ce Li, Weiran Zhu,Zain Karsan, Gene Ting-Chun Kao, Liming Zhang, Hua Chai, Philip F. Yuan, and Philippe Block
year 2020
title 3d-Printed Bending-Active Formwork for Shell Structures
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2026)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_18
summary This paper presents a novel building technique for the formwork of thin shell structures with 3d-printed bending-active mesh sheets. To enhance the structural stiffness of the flexible plastic materials, bending-active form is applied to utilize the geometry stiffening effect through the large deformation of bending. As it is the main problem to determine the final geometry of the bent surface, design methods with consideration of the numerical simulation is researched and both simulations via dynamic relaxation and finite element method are presented. Several demonstrator pavilions and the building process are shown to test the feasibilities of the presented building techniques in the real shell project. It is expected that this method could be applied into more thin shell projects to realize an efficient building technology with less exhaust of materials.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id cdrf2019_265
id cdrf2019_265
authors Yue Qi, Ruqing Zhong, Benjamin Kaiser, Long Nguyen,Hans Jakob Wagner, Alexander Verl, and Achim Menges
year 2020
title Working with Uncertainties: An Adaptive Fabrication Workflow for Bamboo Structures
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_25
summary This paper presents and investigates a cyber-physical fabrication work-flow, which can respond to the deviations between built- and designed form in realtime with vision augmentation. We apply this method for large scale structures built from natural bamboo poles. Raw bamboo poles obtain evolutionarily optimized fibrous layouts ideally suitable for lightweight and sustainable building construction. Nevertheless, their intrinsically imprecise geometries pose a challenge for reliable, automated construction processes. Despite recent digital advancements, building with bamboo poles is still a labor-intensive task and restricted to building typologies where accuracy is of minor importance. The integration of structural bamboo poles with other building layers is often limited by tolerance issues at the interfaces, especially for large scale structures where deviations accumulate incrementally. To address these challenges, an adaptive fabrication process is developed, in which existing deviations can be compensated by changing the geometry of subsequent joints to iteratively correct the pose of further elements. A vision-based sensing system is employed to three-dimensionally scan the bamboo elements before and during construction. Computer vision algorithms are used to process and interpret the sensory data. The updated conditions are streamed to the computational model which computes tailor-made bending stiff joint geometries that can then be directly fabricated on-the-fly. In this paper, we contextualize our research and investigate the performance domains of the proposed workflow through initial fabrication tests. Several application scenarios are further proposed for full scale vision-augmented bamboo construction systems.
series cdrf
email
last changed 2022/09/29 07:51

_id acadia20_238
id acadia20_238
authors Zhang, Hang
year 2020
title Text-to-Form
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 238-247.
doi https://doi.org/10.52842/conf.acadia.2020.1.238
summary Traditionally, architects express their thoughts on the design of 3D architectural forms via perspective renderings and standardized 2D drawings. However, as architectural design is always multidimensional and intricate, it is difficult to make others understand the design intention, concrete form, and even spatial layout through simple language descriptions. Benefiting from the fast development of machine learning, especially natural language processing and convolutional neural networks, this paper proposes a Linguistics-based Architectural Form Generative Model (LAFGM) that could be trained to make 3D architectural form predictions based simply on language input. Several related works exist that focus on learning text-to-image generation, while others have taken a further step by generating simple shapes from the descriptions. However, the text parsing and output of these works still remain either at the 2D stage or confined to a single geometry. On the basis of these works, this paper used both Stanford Scene Graph Parser (Sebastian et al. 2015) and graph convolutional networks (Kipf and Welling 2016) to compile the analytic semantic structure for the input texts, then generated the 3D architectural form expressed by the language descriptions, which is also aided by several optimization algorithms. To a certain extent, the training results approached the 3D form intended in the textual description, not only indicating the tremendous potential of LAFGM from linguistic input to 3D architectural form, but also innovating design expression and communication regarding 3D spatial information.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_208
id acadia20_208
authors Zheng, Hao; Wang, Xinyu; Qi, Zehua; Sun, Shixuan; Akbarzadeh, Masoud
year 2020
title Generating and Optimizing a Funicular Arch Floor Structure
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 208-217.
doi https://doi.org/10.52842/conf.acadia.2020.2.208
summary In this paper, we propose a geometry-based generative design method to generate and optimize a floor structure with funicular building members. This method challenges the antiquated column system, which has been used for more than a century. By inputting the floor plan with the positions of columns, designers can generate a variety of funicular supporting structures, expanding the choice of floor structure designs beyond simply columns and beams and encouraging the creation of architectural spaces with more diverse design elements. We further apply machine learning techniques (artificial neural networks) to evaluate and optimize the structural performance and constructability of the funicular structure, thus finding the optimal solutions within the almost infinite solution space. To achieve this, a machine learning model is trained and used as a fast evaluator to help the evolutionary algorithm find the optimal designs. This interdisciplinary method combines computer science and structural design, providing flexible design choices for generating floor structures.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_238
id sigradi2020_238
authors Álvarez, Marcelo; Bernal, Marcelo; Castro, Carlos
year 2020
title Modeling technique for vault-like structure generation through topological manipulation
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 238-245
summary This study is based on the development of a modeling technique for vault-like structure generation through topological manipulation. Currently, topology-driven form-finding has been implemented in tensile structures, but no further studies have been conducted for compression-only structures. The focus of this study is to approach the problem of highly determined vault shapes by their input topology. The technique operates at the topological level between vertices and edges to create an input 2D topology map. The particle-spring system uses such a map to simulate the resulting 3D mesh geometry. For testing purposes, we explore three generative approaches. The results show the effectiveness of the technique to manipulate the topological relationships that controls the generation of the funicular structures.
keywords Form-finding, Funicular, Particle-spring system, Design space, Topology
series SIGraDi
email
last changed 2021/07/16 11:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_2578 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002