CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id ascaad2022_102
id ascaad2022_102
authors Turki, Laila; Ben Saci, Abdelkader
year 2022
title Generative Design for a Sustainable Urban Morphology
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 434-449
summary The present work concerns the applications of generative design for sustainable urban fabric. This represents an iterative process that involves an algorithm for the generation of solar envelopes to satisfy solar and density constraints. We propose in this paper to explore a meta-universe of human-machine interaction. It aims to design urban forms that offer solar access. This being to minimize heating energy expenditure and provide solar well-being. We propose to study the impact of the solar strategy of building morphosis on energy exposure. It consists of determining the layout and shape of the constructions based on the shading cut-off time. This is a period of desirable solar access. We propose to define it as a balance between the solar irradiation received in winter and that received in summer. We rely on the concept of the solar envelope defined since the 1970s by Knowles and its many derivatives (Koubaa Turki & al., 2020). We propose a parametric model to generate solar envelopes at the scale of an urban block. The generative design makes it possible to create a digital model of the different density solutions by varying the solar access duration. The virtual environment created allows exploring urban morphologies resilient both to urban densification and better use of the context’s resources. The seasonal energy balance, between overexposure in summer and access to the sun in winter, allows reaching high energy and environmental efficiency of the buildings. We have developed an algorithm on Dynamo for the generation of the solar envelope by shading exchange. The program makes it possible to detect the boundaries of the parcels imported from Revit, establish the layout of the building, and generate the solar envelopes for each variation of the shading cut-off time. It also calculates the FAR1 and the FSI2 from the variation of the shading cut-off time for each parcel of the island. We compare the solutions generated according to the urban density coefficients and the solar access duration. Once the optimal solution has been determined, we export the results back into Revit environment to complete the BIM modelling for solar study. This article proposes a method for designing buildings and neighbourhoods in a virtual environment. The latter acts upstream of the design process and can be extended to the different phases of the building life cycle: detailed design, construction, and use.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ecaade2020_290
id ecaade2020_290
authors Elesawy, Amr Alaaeldin, Signer, Mario, Seshadri, Bharath and Schlueter, Arno
year 2020
title Aerial Photogrammetry in Remote Locations - A workflow for using 3D point cloud data in building energy modeling
doi https://doi.org/10.52842/conf.ecaade.2020.1.723
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 723-732
summary Building energy modelling (BEM) results are highly affected by the surrounding environment, due to the impact of solar radiation on the site. Hence, modelling the context is a crucial step in the design process. This is challenging when access to the geometrical data of the built and natural environment is unavailable as in remote villages. The acquisition of accurate data through conventional surveying proves to be costly and time consuming, especially in areas with a steep and complex terrain. Photogrammetry using drone-captured aerial images has emerged as an innovative solution to facilitate surveying and modeling. Nevertheless, the workflow of translating the photogrammetry output from data points to surfaces readable by BEM tools proves to be tedious and unclear. This paper presents a streamlined and reproducible approach for constructing accurate building models from photogrammetric data points to use for architectural design and energy analysis in early design stage projects.
keywords Building Energy Modeling; Photogrammetry; 3D Point Clouds; Low-energy architecture; Multidisciplinary design; Education
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_156
id ecaade2020_156
authors Hemmerling, Marco and Maris, Simon
year 2020
title INTERCOM - A platform for collaborative design processes
doi https://doi.org/10.52842/conf.ecaade.2020.2.173
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 173-180
summary The INTERCOM project propounds a cloud-based collaboration platform for digital planning processes in architecture. The concept is based on an openBIM approach and ensures open access for all partners involved. At its core it provides IFC-based and model-related online tools for planning, communication and collaboration. The interaction with the model and the exchange with other project partners takes place in real-time via a model-related chat and BCF exports. In addition, the integration of e-learning modules (e.g. video tutorials, wikis, project documents) encourages problem solving through further education. Especially the integration of communication and collaboration tools is supposed to enhance the decision making throughout the design process and become a key factor for a successful and coordinated BIM process. Primarily INTERCOM has been developed as a prototype for teaching BIM in interdisciplinary teams. Subsequently, the application can also be adopted for professional practice. The paper evaluates previous experiences from BIM cloud teaching and discusses the conception and development of the proposed collaborative platform.
keywords architecture curriculum; didactics; building information modeling (BIM); collaborative design process; common data environment (CDE)
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2020_222
id ecaade2020_222
authors Ikeno, Kazunosuke, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Automatic Generation of Horizontal Building Mask Images by Using a 3D Model with Aerial Photographs for Deep Learning
doi https://doi.org/10.52842/conf.ecaade.2020.2.271
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 271-278
summary Information extracted from aerial photographs is widely used in urban planning and design. An effective method for detecting buildings in aerial photographs is to use deep learning for understanding the current state of a target region. However, the building mask images used to train the deep learning model are manually generated in many cases. To solve this challenge, a method has been proposed for automatically generating mask images by using virtual reality 3D models for deep learning. Because normal virtual models do not have the realism of a photograph, it is difficult to obtain highly accurate detection results in the real world even if the images are used for deep learning training. Therefore, the objective of this research is to propose a method for automatically generating building mask images by using 3D models with textured aerial photographs for deep learning. The model trained on datasets generated by the proposed method could detect buildings in aerial photographs with an accuracy of IoU = 0.622. Work left for the future includes changing the size and type of mask images, training the model, and evaluating the accuracy of the trained model.
keywords Urban planning and design; Deep learning; Semantic segmentation; Mask image; Training data; Automatic design
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2020_517
id ecaade2020_517
authors Lharchi, Ayoub, Ramsgaard Thomsen, Mette and Tamke, Martin
year 2020
title Connected Augmented Assembly - Cloud based Augmented Reality applications in architecture
doi https://doi.org/10.52842/conf.ecaade.2020.1.179
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 179-186
summary Current design practices rely on a set of computational tools to simulate and optimize the design in regards to questions concerning architecture, engineering, and construction. However, little progress has been made in tools related to the design and execution of a building assembly. This paper aims to present an integrated procedure that targets the assembly of complex structures. Two challenges are identified and addressed: first, the necessity of a connected design environment where multiple stakeholders can communicate, modify, and give feedback on the assembly sequence. Second, the instructions for the assembly of structures to untrained users. The suggested method is based on the Assembly Information Modeling framework, which provides a general approach to generate assembly information from CAD data and utilizes AEC cloud platforms as a base for communication and Augmented Reality devices as a Human Machine Interface. Ultimately, both cases are combined to constitute Connected Augmented Assembly, a bidirectional approach to assembly design, review, and execution.
keywords assembly sequence; augmented reality; assisted assembly; cloud aec; assembly information modeling
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2012_061
id ecaade2012_061
authors Macris, Vincent ; Weytjens, Lieve ; Geyskens, Kenny ; Knapen, Marc ; Verbeeck, Griet
year 2012
title Design Guidance for Low-Energy Dwellings in Early Design Phases: Development of a simple design support tool in SketchUp
doi https://doi.org/10.52842/conf.ecaade.2012.1.691
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 691-699.
summary Considering the energy effi ciency and comfort levels of dwellings, stricter legislation will be applied towards 2020. To reach these requirements, an insight into the energy effi ciency becomes essential from the start of a design. However, the uptake of building simulation tools by architects and students to evaluate the energy performance during the architectural design process remains very limited, mainly due to the complexity of these tools. Therefore, this research aims at early design support through an easy-to-use application adapted to the modelling logic of a designer. As architects often use simple CAAD design tools for design exploration, a prototype was established in Google SketchUp. In this context, the paper presents the development of a support tool for low-energy dwellings in early design phases, allowing designers to quickly assess the thermal comfort and energy performance of early design alternatives.
wos WOS:000330322400073
keywords Design support tool; Energy; SketchUp; Architectural design process; Output
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2020_009
id ecaade2020_009
authors Reaver, Kai
year 2020
title After Imagery - Evaluating the use of mixed reality (MR) in urban planning
doi https://doi.org/10.52842/conf.ecaade.2020.1.187
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 187-196
summary While many researchers have developed interesting use cases for Mixed Reality (MR) in urban environments, the paper argues that determining the long-term viability of such applications as planning tools will likely require evaluating whether such applications are compatible with the democratically mandated procedures in Urban Planning. The paper compares this claim to current debates regarding the legality of the use of digital imagery in Urban Planning today. The paper elaborates these arguments through case studies done in Oslo, Norway in the context of developing the "Nordic Digital City". The case studies involve the use of MR in 1) a public competition, 2) a regulation plan, and 3) a building permit. The study thus presents some of the benefits and challenges of using these technologies in such a manner, particularly regarding accuracy, user feedback, and robustness as a common interface. The paper concludes that MR offers several benefits to Urban Planning, but will likely require a highly digitized competent public sector in order to function, in addition to requiring negotiation between the required user data and user privacy rights, suggesting that MR development may migrate from a primarily technical domain to a matter of public policy.
keywords Mixed Reality; Urban Planning; Urbanism; Augmented Reality
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2020_106
id caadria2020_106
authors Tian, Jieren and Yu, Chuanfei
year 2020
title Dynamic Translation of Real-world Environment Factors and Urban Design Operation in a Game Engine - A Case Study of Central District in Tiebei New Town, Nanjing
doi https://doi.org/10.52842/conf.caadria.2020.2.011
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 11-20
summary The building and its urban environment are complex and dynamic data systems. Designers, who make design decisions, need the design tools to simulate the built environment, to estimate the feasibility of the design. However, the static modeling software, widely used nowadays, restricts the linkage relationship between the actual data environment and the simulation model, which lacks the dynamic constraint relationship and the construction of the loop order. Different from traditional modeling and analysis tools, simulation games, with dynamic constraint rules and real-time feedback operations, provide a new way of thinking and a perspective to observe the urban, which makes the simulation game be seen as a simplified analog system, to some extent. Therefore, this paper plan to builds a city model, based on an urban design project of an urban district of Nanjing as an example, by using the Cities: Skylines, a city simulation game with priority of traffic and zoning concept. Based on this dynamic model, the next step will evaluate the original project and carry out further optimization operations in real-time.
keywords real-time interaction; dynamic process simulation; urban environment; city simulation system; simulated game
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id acadia20_228
id acadia20_228
authors Alawadhi, Mohammad; Yan, Wei
year 2020
title BIM Hyperreality
doi https://doi.org/10.52842/conf.acadia.2020.1.228
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 228-236.
summary Deep learning is expected to offer new opportunities and a new paradigm for the field of architecture. One such opportunity is teaching neural networks to visually understand architectural elements from the built environment. However, the availability of large training datasets is one of the biggest limitations of neural networks. Also, the vast majority of training data for visual recognition tasks is annotated by humans. In order to resolve this bottleneck, we present a concept of a hybrid system—using both building information modeling (BIM) and hyperrealistic (photorealistic) rendering—to synthesize datasets for training a neural network for building object recognition in photos. For generating our training dataset, BIMrAI, we used an existing BIM model and a corresponding photorealistically rendered model of the same building. We created methods for using renderings to train a deep learning model, trained a generative adversarial network (GAN) model using these methods, and tested the output model on real-world photos. For the specific case study presented in this paper, our results show that a neural network trained with synthetic data (i.e., photorealistic renderings and BIM-based semantic labels) can be used to identify building objects from photos without using photos in the training data. Future work can enhance the presented methods using available BIM models and renderings for more generalized mapping and description of photographed built environments.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_267
id ecaade2020_267
authors Argin, Gorsev, Pak, Burak and Turkoglu, Handan
year 2020
title Through the Eyes of (Post-)Flâneurs - Altering rhythm and visual attention in public space in the era of smartphones
doi https://doi.org/10.52842/conf.ecaade.2020.1.239
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 239-248
summary In the last decade, rapid penetration of smartphones into our everyday life introduced a new kind of urban wanderer named as the 'post-flâneur'. By navigating through the virtual and physical space with a smartphone, and taking and sharing photographs, post-flâneur walks and experiences the city in novel ways. This paper aims to investigate the effects of smartphone use on the human-environment relationship by comparing post-flânerie with flânerie in public space with a focus on two key indicators: alteration of 1) the visual attention and 2) the walking rhythm. In this regard, ten postgraduate Architecture students are asked to perform flânerie and post-flânerie consecutively in the historical city center of Ghent with an eye-tracker and a smartphone. During the flânerie condition, they walked and experienced the city without using a smartphone. In the post-flânerie condition, they used a smartphone, took pictures and uploaded them to an application. By analyzing the eye-tracker (number and duration of fixations) and the smartphone (location data and geolocated photographs) data, altering rhythm and visual attention during the flânerie and post-flânerie were compared. Preliminary results indicate that flânerie and post-flânerie differ in terms of rhythm and visual attention. The average duration of fixations on the environment were significantly lower in the post-flânerie condition while the average walking rhythm was faster but impeded from time to time. In addition, post-flâneurs' visual attention was on the smartphone during a significant part of the stationary activities which point out to an altered state of public space appropriation. The findings are significant because they reveal the novel spatial appropriations and experiences of the (post)public space -particularly "the honeypot effect" which was more significant in the post-flânerie condition. These observations evoke questions on how designers can rethink public space as a hybrid construct integrating the virtual and the physical.
keywords post-flâneur; rhythm; visual attention; smartphone; eye-tracking
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_160
id caadria2020_160
authors Bruce, Caitlin, Sweet, Kevin and Ok, Jeongbin
year 2020
title Closing the Loop - Recycling Waste Plastic
doi https://doi.org/10.52842/conf.caadria.2020.1.135
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 135-144
summary Worldwide we produce billions of tonnes of waste per year, including a million tonnes of plastic waste. Currently, there are methods for recycling plastic, but these methods can be expensive and time-consuming, resulting in most of the plastic being thrown into the landfill. Because plastic does not fully degrade, it ends up in the ocean and other waterways, poisoning the water with toxins. The purpose of this research is to provide a solution to reducing plastic waste by creating an alternative method of recycling that utilises new technologies such as additive manufacturing, to create a building material that fits into the concept of the circular economy. The findings of this research explored the recycling of plastic by collecting plastic waste such as PLA (Polylactic Acid) from old 3D printed models and other sources. The plastic was recycled into filament for additive manufacturing (AM) and used to print a building component, establishing a foundational proof of concept for the use of recycled plastic as a potential building material.
keywords Additive Manufacturing; 3D Printing; Recycling Plastic ; Recycled Filament ; Waste Plastic
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_237
id caadria2020_237
authors Dai, Sida and Kleiss, Michael
year 2020
title Shape Grammars in Computational Generative Design for Origami
doi https://doi.org/10.52842/conf.caadria.2020.2.557
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 557-566
summary This article presents a method to introduce the concept of computer-generated design into origami design through shape grammar. In the previous origami design method, rigorous and complicated mathematical calculations takes a lot of energy from the designers. This research simplifies the design process of crease pattern into the generating and applying shape grammar rules. As a blank space in the current design field, the generative design of origami greatly expands the possibility of origami design and also provides the basis for the further use of computer technology in origami design
keywords Shape Grammars; Generative Design; Origami
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_141
id caadria2020_141
authors Dezen-Kempter, Eloisa, Mezencio, Davi Lopes, Miranda, Erica De Matos, De Sá, Danilo Pico and Dias, Ulisses
year 2020
title Towards a Digital Twin for Heritage Interpretation - from HBIM to AR visualization
doi https://doi.org/10.52842/conf.caadria.2020.2.183
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 183-191
summary Data-driven Building Information Modelling (BIM) technology has brought new tools to efficiently deal with the tension between the real and the virtual environments in the field of Architecture, Engineering, Construction, and Operation (AECO). For historic assets, BIM represents a paradigm shift, enabling better decision-making about preventive maintenance, heritage management, and interpretation. The potential application of the Historic-BIM is creating a digital twin of the asset. This paper deals with the concept of a virtual environment for the consolidation and dissemination of heritage information. Here we show the process of creating interactive virtual environments for the Pampulha Modern Ensemble designed by Oscar Niemeyer in the 1940s, and the workflow to their dissemination in an AR visualization APP. Our results demonstrate the APP feasibility to the Pampulha's building interpretation.
keywords Augmented Reality (AR); Historic Building Information Modelling (HBIM); Heritage Interpretation; Modern Architecture
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2020_131
id ecaade2020_131
authors Gortazar-Balerdi, Ander and Markusiewicz, Jacek
year 2020
title Legible Bilbao - Computational method for urban legibility
doi https://doi.org/10.52842/conf.ecaade.2020.1.209
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 209-218
summary Legibility is a core concept in spatial cognition theories since Kevin Lynch published The Image of the City in 1960. It is the ability of a city to be interpreted and easily used, travelled and enjoyed, from the pedestrian's perspective. Following a proposal in the participatory budget process of the city of Bilbao, we wrote a technical report to improve the urban legibility of the city and facilitate wayfinding through innovations in signage. This paper aims to present this project, which is an application of computational methods to measure urban legibility that resulted in a proposal for a new wayfinding strategy for Bilbao. The method is based on GIS data, and it simulates urban processes using dedicated algorithms, allowing us to perform two analyses that resulted in two overlapping maps: a heat map of decision points and a map of visual openings. It allowed us to perceive common urban elements that can help to decide both the location of the wayfinding signage and how it should provide the relevant information. In addition, the research introduces the concept of anticipation points, as a complement to the existing idea of decision points.
keywords Wayfinding; Urban legibility; Spatial cognition
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2020_534
id sigradi2020_534
authors Mariano, Pedro Oscar Pizzetti; Fonseca, Raphaela Walger da; Pereira, Fernando Oscar Ruttkay; Pereira, Alice Theresinha Cybis
year 2020
title Autonomous parametric process for daylight simulation applied to the proposal of a daylighting of buildings performance tool
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 534-540
summary The openings features definition, considering the obstructions influence caused by the urban environment, are extremely relevant for the daylit buildings design. The complexity of the daylight phenomenon and the need to estimate its performance spread the use of parametric simulation and simulation programs. Thus, this article aims to create a parametric process, derived from a digital process, capable of simulating and registering the performance of daytime construction in different urban scenarios in an automated way. This process made it possible to generate a series of data capable of producing tools for understanding the phenomenon of natural daylight.
keywords Parametric process, Simulation, Daylighting, Building performance
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_396
id caadria2020_396
authors Martinho, Helena, Araújo, Gonçalo and Leitão, António
year 2020
title From Macro to Micro - An integrated algorithmic approach towards sustainable cities
doi https://doi.org/10.52842/conf.caadria.2020.2.101
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 101-110
summary As urbanization rapidly increases towards concerning levels, new methodologies and approaches are required to shape future cities. This research combines passive design approaches with building performance simulation in the same algorithmic description, to highlight the bidirectional impact of the building and the urban context in which it is inserted. To that end, the proposed workflow employs an algorithmic design tool along with validated analysis engines, to assess incident solar radiation and comfort metrics. We apply this methodology in a case study, exploring alternative building geometries to mitigate the consequences of uninformed design decisions in the environment. Results show that the application of passive design strategies can be done within early design stages, allowing a continuous workflow from project to construction while minimizing time and labour requirements regarding building efficiency.
keywords Algorithmic design; Building analysis; Passive design; Urban comfort
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id ecaade2020_244
id ecaade2020_244
authors Simeone, Davide, Cursi, Stefano, Coraglia, Ugo Maria and Fioravanti, Antonio
year 2020
title Reasoning in Common Data Environments - Re-thinking CDEs to enhance collaboration in BIM processes
doi https://doi.org/10.52842/conf.ecaade.2020.2.499
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 499-506
summary In BIM processes, the concept of Common Data Environment - CDE - has often been depicted as a key element for successful collaboration and information sharing among different actors but, in current practice, acts as a mere documentation repository ineffective for true collaborative purposes. Therefore, the idea of CDE seems to be overrated on the one hand and unexploited on the other, while effective collaboration is still far from being decisively supported. To overcome this lack, the present research focuses on the definition of a new generation of CDEs, enhanced with an information level for knowledge integration provided by different information carriers such as models and datasets. The paper discusses its development through a graph database platform and dedicated methodologies for data retrieval and query, to verify coherence and consistency of information among different models.
keywords Collaboration in AEC processes; Common Data Environment; Graph Databases; Building Information Modeling; Queries and data retrieval
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_67034 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002