CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_217
id sigradi2020_217
authors Arbeláez-Ochoa, Elsie; Torreblanca-Díaz, David A.; Rodríguez-Castrillon, Karen; Munoz-Noriega, Daniela
year 2020
title Methodology for the abstraction and morphological experimentation of nature’s patterns: an application case of morphology research subject in Industrial Design program
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 217-222
summary Forms in nature have been emerging in response to different requirements, in a complex and dynamic ecosystem. Architects and designers have usually used references from nature for their projects; in industrial design education, the use of nature’s referents allows to expand the morphological possibilities for product design and systems. In this paper, a methodological proposal for the abstraction and morphological transformation of nature’s patterns is presented, highlighting the advantages of parametric design and additive manufacturing technologies for morphological experimentation, in the context of the first application case of morphology research subject in the Industrial Design program at Universidad Pontificia Bolivariana.
keywords Bio-inspired design, Morphology, Experimental morphology, Additive manufacturing technologies, Industrial design education
series SIGraDi
email
last changed 2021/07/16 11:48

_id acadia20_300
id acadia20_300
authors H Arnardottir, Thora; Dade-Robertson, Martyn; Mitrani, Helen; Zhang, Meng; Christgen, Beate
year 2020
title Turbulent Casting
doi https://doi.org/10.52842/conf.acadia.2020.1.300
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 300-309.
summary There has been a growing interest in living materials and fabrication processes including the use of bacteria, algae, fungi, and yeast to offer sustainable alternatives to industrial materials synthesis. Microbially induced calcium carbonate precipitation (MICP) is a biomineralization process that has been widely researched to solve engineering problems such as concrete cracking and to strengthen soils. MICP can also be used as an alternative to cement in the fabrication of building materials and, because of the unique process of living fabrication, if we see bacteria as our design collaborators, new types of fabrication and processes may be possible. The process of biomineralization is inherently different from traditional fabrication processes that use casting or molding. Its properties are influenced by the active bacterial processes that are connected to the casting environment. Understanding and working with interrelated factors enables a novel casting approach and the exploration of a range of form types and materials of variable consistencies and structure. We report on an experiment with partial control of mineralization through the design of different experimental vessels to direct and influence the cementation process of sand. In order to capture the form of the calcification in these experiments, we have analyzed the results using three-dimensional imaging and a technique that excavates the most friable material from the cast in stages. The resulting scans are used to reconstruct the cementation timeline. This reveals a hidden fabrication/growth process. These experiments offer a different perspective on form finding in material fabrication.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202018204
id ijac202018204
authors Nathansohn, Nof; Molly Mason, David Allen White, Hugh Timothy Ebdy, Yaara Yacoby, Hila Sharabi, and Lawrence Sass
year 2020
title Design for disassembly: Using temporary fabrication for land politics in the Negev
source International Journal of Architectural Computing vol. 18 - no. 2, 155-173
summary Political conflicts have increasingly displaced people from their homes, necessitating various forms of temporary structures and housing. However, these shelters are often one-size-fits-all and do not take into account the individual requirements, family structures, or cultural needs of these communities. This article explores how digital fabrication can be used to empower disenfranchised communities to act as their own architects. Because the police demolish the structures in Al Araqib every 3 weeks, the residents have to rebuild their structures, and appropriate architecture as a resistance tool, and not only as a housing solution. This circumstance allows us to develop a structure designed primarily for the condition of rapid disassembly that can additionally be produced with a low-tech setup of a mobile computer numerical control router. Through this case study with the Bedouin village Al Araqib in the Negev Desert, we introduce the term community-specific design, present our methodology for designing and fabricating a temporary structure in collaboration with the community, and outline the logistics for a future mobile infrastructure. Beyond aiding the Bedouin’s fight for justice, our intention as designers, acutely aware of the power of technology and architecture, is to harness both physical and digital tools in an effort to create innovative systems that can be leveraged by unrecognized populations struggling for cultural survival.
keywords Digital fabrication, temporary structur
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_053
id ecaade2020_053
authors Ren, Yue, Chu, Jie and Zheng, Hao
year 2020
title Dynamic Symbiont - An Interactive Urban Design Method Combining Swarm Intelligence and Human Decisions
doi https://doi.org/10.52842/conf.ecaade.2020.1.383
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 383-392
summary Can a virtual city game be built by both the public and computer-based on real-site data? In the current process of deepening global connectivity, requirements for an effective urban design are no longer limited to functions or aesthetics, but a smart, dynamic complex with multi-interactions of data, group behaviours, and physical space. This paper introduces the logic of swarm intelligence and particle system for proposing a new urban design methodology. The platforms range from simulations that quantify the impact of the disruptive interventions of city activities to communicable collaboration between different users in a UI system, which creates virtual connections between optimized urbanscape and users. In the design system, based on the context data, the computer firstly simulates and optimizes the existing 2D activity joints between the people and analyzed the current spatial connection nodes into certain design rules. Through optimal programming for spatial connection and data iterations, the activity connection structures in the second simulation are abstracted into a set of interactive 3D topographic. The final data-visualization results are presented as a co-building megacity in a virtual construction game. Users can choose the virtual building unit types and intuitively influence the future urbanscape decision through virtual construction.
keywords Swarm Intelligence; Particle System; Digital Simulation; Human-Machine Interaction; Data Visualization
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_331
id ecaade2020_331
authors Turhan, Gozde Damla, Varinlioglu, Guzden and Bengisu, Murat
year 2020
title Dynamic Relaxation Simulations of Bacterial Cellulose-based Tissues
doi https://doi.org/10.52842/conf.ecaade.2020.2.061
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 61-66
summary In this paper, a sample of a bacterial cellulose-based tissue is studied in terms of its tectonics by presenting a framework that proposes a transition from digital to physical in terms of design and fabrication. First, sample tissue is digitally modeled and optimized through dynamic relaxation of spring-particle systems by simulating bending behavior; secondly, the tissue is materialized in a form of a biocomposite out of plant cellulose as a fabric out of fiber network for reinforcement, and bacterial cellulose, as the membrane. As the last step, the results are discussed in terms of the deflection, tensile stress lines and bending moment. This framework anticipates a number of methodologies from design and biology, combined with digital fabrication technologies in new ways to change the processes, augment the quality of ideas and outcomes; thus, question the perception of making spaces for living.
keywords Structural optimization; dynamic relaxation; bacterial cellulose; biocomposite
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id acadia20_546
id acadia20_546
authors Yan Ng, Tsz; Ahlquist, Sean; Filipov, Evgueni; Weisman, Tracey
year 2020
title Active-Casting
doi https://doi.org/10.52842/conf.acadia.2020.1.546
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 546-555.
summary Active-Casting explores the use of bespoke computer numerical controlled (CNC) manufactured knits to produce volumetric textile formwork for casting glass-fiber-reinforced concrete (GFRC). As a collaboration between experts in architecture, textile fabrication, and civil engineering, the research investigates multimaterial, functionally graded knit formwork as a fully seamless system to cast concrete. Working with controlled characteristics such as elasticity and stiffness of yarn type and knit structure, the soft textile is conceived as the vessel that defines the performative characteristics of volume, geometry, and surface detail. With only a minimal frame to suspend the volumetric cast, hydrostatic pressure “inflates” the fabric formwork, creating a dynamic form-finding process that eliminates the need for typical molding materials such as wood or foam. While active formfinding processes for CNC knit casting have been explored as an open-face, GFRC-sprayed system, the Active-Casting process produces a finished surface on all faces, embedded with expressions in form and surface detail from the knitted formwork. The precast units using this process reduce the amount of construction waste for formwork production, proposes a more automated fashion for manufacturing the formwork, and produces casts with complex geometries difficult to accomplish with traditional casting methods.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_427
id ecaade2020_427
authors Akçay Kavakoglu, Ayºegül
year 2020
title Beyond Material - Digital Tectonics of Fabric and Concrete
doi https://doi.org/10.52842/conf.ecaade.2020.1.089
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 89-96
summary Fabric formwork, known as the casting concrete with flexible fabric molds, frees the nature of the material, which is fluidity; hence, its tectonics. This paper examines the tectonics of concrete and fabric through computational design and analog methods. During this examination, fabrigami technique is used to foresee the intuitive act of concrete within the fabric mold concerning the computational model. Fabrigami use in fabric formwork allows the emergence of a dynamic fabric mold system revealing form variations.
keywords fabric formwork, fabrigami, folding, dynamic mold
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_094
id caadria2020_094
authors Yang, Chunxia and Gu, Zhuoxing
year 2020
title Optimization of Public Space Design Based on Reconstruction of Digital Multi-Agent Behavior - --Taking the public space of the North Bund in Shanghai as an example
doi https://doi.org/10.52842/conf.caadria.2020.1.335
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 335-344
summary This paper uses the digital software platform to build an intelligent multi-agent system. Through the classification of site elements, the Shanghai North Bund waterfront public space elements are classified into different systems such as transportation hub facilities, catering facilities, shopping facilities and leisure venues. The main population activities in this area are classified into different activities such as youth activities, elderly activities, and family activities through user behavior classification. Finally, the intelligent multi-agent particle swarm is built by the dynamic simulation component of grasshopper, and its individual behavior rules and group interaction rules are adjusted to form the crowd moving particle flow. The particle flow interacts with the classified site elements to derive a distribution pattern of population activity in different systems. Particle flow data information and particle distribution patterns after interactive simulation can be the support for urban design evaluation and optimization.
keywords Self-organizing system; Multi-agent system; Particle property construction; Urban design elements; Waterfront public space
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2020_351
id ecaade2020_351
authors Kontovourkis, Odysseas, Stylianou, Sofia and Kyriakides, George
year 2020
title An open-source bio-based material system development for sustainable digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2020.2.031
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 31-40
summary The development of bio-based material systems and their correlation with digital design and fabrication processes is an ever-evolving area of research with a number of experimental investigations. One such direction of investigation is related to the use of mycelium-based materials, which can minimize environmental impact and energy consumption during production, but also can allow alternative sustainable construction approaches to come to the fore. This work proposes an open-source mycelium-based construction material development, emphasizing on three interrelated steps. Firstly, the fungi growth based on Pleurotus ostreatus mycelium. Secondly, the digital production of custom formworks and material casting for uniform growth and building components creation. Finally, the construction technique investigation based on layering and stabilization of components. Through the suggested open-source bio-based material system development, the aim is to provide an alternative approach in construction that involves an ecological material with low environmental impact, interrelated with digital fabrication and assembly processes. This might open new directions of investigation to the wider architecture and construction community, allowing further consideration and possible implementation of mycelium material towards a more sustainable construction.
keywords Bio-based material; mycelium growth; digital fabrication; construction systems; sustainable construction
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2020_377
id sigradi2020_377
authors Xu, Weishun; Huang, Zixun
year 2020
title Robotic Fabrication of Sustainable Hybrid Formwork with Clay and Foam for Concrete Casting
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 377-383
summary This paper presents a hybrid formwork fabrication method utilizing additive manufacturing with clay on top of curved foam surfaces robotically fabricated with hot wire. The primary focus of this study is to develop a relatively efficient and highly sustainable formwork manufacturing method capable of producing geometrically complex modular concrete building components. The method leverages fluidity and recyclability of clay to produce uniquely shaped, free-form parts of the mold, and reduces overall production time by using foam for shared mold support/enclosure. A Calibration and tool path generating method based on computational modeling to integrate the two systems are also subsequently developed.
keywords Robotic fabrication, Hybrid formwork, Mass customization, Clay printing, Foam cutting
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2020_037
id caadria2020_037
authors Yoon, Jungwon and Choi, Seok-won
year 2020
title Thermo-Shading - Digital Design and Additive Manufacturing of SMP Prototypes
doi https://doi.org/10.52842/conf.caadria.2020.1.035
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 35-44
summary We present results on the development of an intelligent and informed SMP prototypes, as proof-of-concept models to assess applicability of thermo-responsive materials in adaptive façades. SMP has the intrinsic properties to detect environmental heat changes and react by changing its form into memorized shapes. Among different morphology and deformation behaviours of SMP components, this design-to-fabrication study focuses on design and 3D printing fabrication of prototypes. Additionally, casting was tested to validate the rapid prototyping of additive manufacturing. Furthermore, two different activation systems of SMP were presented to compare mechanisms between a surface-active system and an actuator system.
keywords SMP; AM; thermo-responsive
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia20_456
id acadia20_456
authors Alali, Jiries; Negar Kalantar, Dr.; Borhani, Alireza
year 2020
title Casting on a Dump
doi https://doi.org/10.52842/conf.acadia.2020.1.456
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 456-463.
summary “Casting on a dump” focuses on finding accessible, low-tech fabrication methodologies that allow for the construction of parametrically designed nonstandard modular cast panels. Such an approach adopts a computational design framework using a single low-tech and low-energy fabrication device to create nonrepetitive volumetric panels cast in situ. The design input for these panels is derived from design preferences and environmental control data. The technique expands upon easy to fabricate and cast methods, targeting less-developed logistical settings worldwide, and thus responding to imminent needs related to climate, available resources, and the economy.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_74
id acadia20_74
authors Bucklin, Oliver; Born, Larissa; Körner, Axel; Suzuki, Seiichi; Vasey, Lauren; T. Gresser, Götz; Knippers, Jan; Menges,
year 2020
title Embedded Sensing and Control
doi https://doi.org/10.52842/conf.acadia.2020.1.074
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 74-83.
summary This paper investigates an interactive and adaptive control system for kinetic architectural applications with a distributed sensing and actuation network to control modular fiber-reinforced composite components. The aim of the project was to control the actuation of a foldable lightweight structure to generate programmatic changes. A server parses input commands and geometric feedback from embedded sensors and online data to drive physical actuation and generate a digital twin for real-time monitoring. Physical components are origami-like folding plates of glass and carbon-fiber-reinforced plastic, developed in parallel research. Accelerometer data is analyzed to determine component geometry. A component controller drives actuators to maintain or move towards desired positions. Touch sensors embedded within the material allow direct control, and an online user interface provides high-level kinematic goals to the system. A hierarchical control system parses various inputs and determines actuation based on safety protocols and prioritization algorithms. Development includes hardware and software to enable modular expansion. This research demonstrates strategies for embedded networks in interactive kinematic structures and opens the door for deeper investigations such as artificial intelligence in control algorithms, material computation, as well as real-time modeling and simulation of structural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_668
id sigradi2020_668
authors Cenci, Laline Elisangela; Pires, Júlio César Pinheiro; Vieira, Stéphane Soares
year 2020
title Measuring the experience of algorithmic thought digital analogue design in architecture teaching
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 668-675
summary Due to constant technological developments, society’s priorities and cultural perspectives have changed, requiring a redefinition of experiences in education. In the field of architecture teaching, the transition from CAD (Computer-Aided Design) to the design systems in other digital media, such as the parametric design, can be observed. This article aims to demonstrate two analog-digital experiences in an architecture school. The methodology consisted of dividing the activities into three stages: analog, logical, and digital. The results are described through quantitative and qualitative data acquired in the experiences. The data allowed toreflect on the strategies adopted, lessons learned, and futures challenges.
keywords Teaching-learning, Parametric Design, Design Script, Dynamo Studio
series SIGraDi
email
last changed 2021/07/16 11:52

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia20_436
id acadia20_436
authors Chun Hin Fong, Jacky; Long Wun Poon, Adabelle; Sze Ngan, Wing; Hei Ho, Chung; Goepel, Garvin; Crolla, Kristof
year 2020
title Augmenting Craft with Mixed Reality
doi https://doi.org/10.52842/conf.acadia.2020.1.436
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 436-444.
summary This paper discusses novel methods for and advantages of integrating augmented reality (AR) and photogrammetry in hand clay-sculpting workflows. These techniques permit nontrained users to achieve higher precision during the sculpting process by holographically overlaying instructions from digital 3D source geometry on top of the sculpting material. By employing alternative notational systems in design implementation methods, the research positions itself in a postdigital context aimed at humanizing digital technologies. Throughout history, devices have been developed to increase production, such as Henry Dexter’s 1842 “Apparatus for Sculptors” for marble sculpting. Extrapolating from this, the workflow presented in this paper uses AR to overlay extracted information from 3D models directly onto the sculptor’s field of vision. This information can then become an AR-driven guidance system that assists the sculptor. Using the Microsoft HoloLens, holographic instructions are introduced in the production sequence, connecting the analog sculpture fabrication directly with a digital environment, thus augmenting the craftspeople’s agency. A series of AR-aided sculpting methods were developed and tested in a demonstrator case study project that created a small-scale clay copy of Henry Moore’s Sheep Piece (1971–1972). This paper demonstrates how user-friendly software and hardware tools have lowered the threshold for end users to develop new methods that straightforwardly facilitate and improve their crafts’ effectiveness and agency. This shows that the fusion of computational design technology and AR visualization technology can innovate a specific craft’s design and production workflow, opening the door for further application developments in more architecture-specific fabrication contexts.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_261
id ecaade2020_261
authors Dimopoulos, Georgios, Kontaxakis, Dimitris, Symeonidou, Ioanna and Tsinikas, Nikos
year 2020
title From Analog to Digital: Double Curved Lightweight Structures in Architectural Design Education
doi https://doi.org/10.52842/conf.ecaade.2020.2.181
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 181-188
summary The paper describes an architectural design studio for 5th year students at the Department of Architecture of the Aristotle University in Thessaloniki, Greece. The educational objective of the studio is the design of double curved lightweight structures, employing a creative methodology which instrumentalizes the study of nature as a source of inspiration. The objective of the course is to familiarize the students with curves and form-finding (analogue and digital) with the aim to design forms that display structural stability. The paper will highlight the educational gains from a hybrid design methodology which employs both analog (physical) form-finding tools and digital modeling for the design of double curvature surfaces.
keywords Lightweight structures; Form-finding; Dynamic models; Tensile structures; Architecture education
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_840437 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002