CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id artificial_intellicence2019_129
id artificial_intellicence2019_129
authors Hua Chai, Liming Zhang, and Philip F. Yuan
year 2020
title Advanced Timber Construction Platform Multi-Robot System for Timber Structure Design and Prefabrication
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_9
summary Robotic Timber Construction has been widely researched in the last decade with remarkable advancements. While existing robotic timber construction technologies were mostly developed for specific tasks, integrated platforms aiming for industrialization has become a new trend. Through the integration of timber machining center and advanced robotics, this research tries to develop an advanced timber construction platform with multi-robot system. The Timber Construction Platform is designed as a combination of three parts: multi-robot system, sensing system, and control system. While equipped with basic functions of machining centers that allows multi-scale multifunctional timber components’ prefabrication, the platform also served as an experimental facility for innovative robotic timber construction techniques, and a service platform that integrates timber structure design and construction through real-time information collection and feedback. Thereby, this platform has the potential to be directly integrated into the timber construction industry, and contributes to a mass-customized mode of timber structures design and construction.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id sigradi2020_470
id sigradi2020_470
authors Iasbik, Marina Pires; Martinez, Andressa Carmo Pena; Gazel, Jorge Lira de Toledo
year 2020
title Integration of BIM and Algorithmic Design logics through data exchange between Grasshopper plugin and Revit and Archicad software
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 470-477
summary The Algorithmic Design's integration with BIM (Building Information Modeling), allows greater potential for formal design innovation, tasks automation, greater geometry control, data assignment, and project documentation throughout its life cycle. This paper aims to assist in this integration, analyzing some plugins for conversion from Grasshopper to Archicad and Revit. Based on a parameterized social housing model, interoperability tests were carried out to compare different workflows and discuss some strategies and logics of algorithmic modeling to facilitate the communication between Grasshopper and BIM.
keywords Algorithm design, Building information modeling, Parametric modeling, Project process, Interoperability
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_245
id ecaade2020_245
authors Kampani, Anna and Varoudis, Tasos
year 2020
title Perceptive Machine - Visuospatial Configurations Through Machine Intuition
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 419-428
doi https://doi.org/10.52842/conf.ecaade.2020.1.419
summary Computational tools in architecture have yet to adequately address the issue of evaluating and informing design through the prism of visual perception in 3-dimensional environments. Previous research has demonstrated that although the issue of understanding and designing public spaces is of significant importance, existing methods of data representation in VR are not extensively investigated. The present paper reports on research into the development of a computational model that evaluates and visualises information regarding permeability of the urban fabric in a virtual environment. Primary aim is to create an additional layer for early design stages that will assist in projecting all information in VR space so that the user can explore and grasp through data the impact of each design step in an immersive, human scale.
keywords Computational Design; Virtual reality development; Machine Learning; Urban Analytics; Visual perception
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2020_434
id caadria2020_434
authors Lange, Christian, Ratoi, Lidia and Co, Dominic Lim
year 2020
title Reformative Coral Habitats - Rethinking Artificial Reef structures through a robotic 3D clay printing method.
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 463-472
doi https://doi.org/10.52842/conf.caadria.2020.2.463
summary In 2018 after Typhoon Mangkhut hit Hong Kong, the city lost around 80% of its existing corals. As a consequence, a team consisting of marine biologists and architects have developed a series of performative structures that will be deployed in Hong Kong waters intending to aid new coral growth over the coming years. This paper describes the present research that focuses on the design and fabrication of artificial reef structures utilizing a robotic 3d clay printing method addressing the specificities of Hong Kong marine ecologies. The paper describes further the algorithmic design methodology, the optimization processes in the generation of the printing path, and the methodology for the fabrication processes during the production cycle to achieve even quality and prevent cracking during the drying process.
keywords Digital Fabrication; 3D clay printing; Artificial Coral Reefs; Computational Design
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_164p
id acadia20_164p
authors Lange, Christian; Ratoi, Lidia; Co Lim, Dominic; Hu, Jason; Baker, David M.; Yu, Vriko; Thompson, Phil
year 2020
title Reformative Coral Habitats
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 164-169
summary Coral reefs are some of the most diverse ecologies in the marine world. They are the habitat to tens of thousands of different marine species. However, these wildlife environments are endangered across the globe. Recent research estimates that around 75 percent of the remaining coral reefs are currently under threat. In 2018 after a devastating storm, Hong Kong lost around 80% of its existing corals. Consequently, a team consisting of marine biologists and architects at The University of Hong Kong has developed a series of performative structures that have been deployed in the city's waters in July 2020, intending to aid new coral growth over the coming years. The project was commissioned by the Agriculture, Fisheries, and Conservation Department (AFCD) and is part of an ongoing active management measure for coral restoration in Hoi Ha Wan Marine Park in Hong Kong. The following objectives were defined as part of the design and fabrication research of the project. To develop a design strategy that builds on the concept of biomimicry to allow for complex spaces to occur that would provide attributes against the detachment of the inserted coral fragment, hence could enhance a diverse marine life specific to the context of the cities water conditions. To generate an efficient printing path that accommodates the specific morphological design criteria and ensures structural integrity and the functional aspects of the design. To develop an efficient fabrication process with a DIW 3D printing methodology that considers warping, shrinkage, and cracking in the clay material. The research team developed a method that combined an algorithmic design approach for the design of different geometries with a digital additive manufacturing process utilizing robotic 3D clay printing. The overall fabrication strategy for the complex and large pieces sought to ensure structural longevity, optimize production time, and tackle the involved double-sided printing method. Overall, 128 tiles were printed, covering roughly 40sqm of the seabed.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2020_334
id caadria2020_334
authors Marzęcki, Waldemar
year 2020
title Spatial Continuity Diagram
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 577-586
doi https://doi.org/10.52842/conf.caadria.2020.2.577
summary The article presents the author's original Spatial Continuity Diagram SCD method. The method uses digital techniques to study the urban and architectural features of existing urban structures. The results of these studies are intended to facilitate design decisions regarding the harmonious development of existing urban buildings. The article also discusses a special software for conducting SCD study. The practical application of the research was discussed on the example of a design and implementation of one of the single-family housing estates.
keywords Mathematical simulations; urban composition; spatial continuity; heritage
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2020_053
id ecaade2020_053
authors Ren, Yue, Chu, Jie and Zheng, Hao
year 2020
title Dynamic Symbiont - An Interactive Urban Design Method Combining Swarm Intelligence and Human Decisions
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 383-392
doi https://doi.org/10.52842/conf.ecaade.2020.1.383
summary Can a virtual city game be built by both the public and computer-based on real-site data? In the current process of deepening global connectivity, requirements for an effective urban design are no longer limited to functions or aesthetics, but a smart, dynamic complex with multi-interactions of data, group behaviours, and physical space. This paper introduces the logic of swarm intelligence and particle system for proposing a new urban design methodology. The platforms range from simulations that quantify the impact of the disruptive interventions of city activities to communicable collaboration between different users in a UI system, which creates virtual connections between optimized urbanscape and users. In the design system, based on the context data, the computer firstly simulates and optimizes the existing 2D activity joints between the people and analyzed the current spatial connection nodes into certain design rules. Through optimal programming for spatial connection and data iterations, the activity connection structures in the second simulation are abstracted into a set of interactive 3D topographic. The final data-visualization results are presented as a co-building megacity in a virtual construction game. Users can choose the virtual building unit types and intuitively influence the future urbanscape decision through virtual construction.
keywords Swarm Intelligence; Particle System; Digital Simulation; Human-Machine Interaction; Data Visualization
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2020_313
id caadria2020_313
authors Sanatani, Rohit Priyadarshi
year 2020
title A Machine-Learning driven Design Assistance Framework for the Affective Analysis of Spatial Enclosures
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 741-750
doi https://doi.org/10.52842/conf.caadria.2020.1.741
summary There is a growing research direction that adopts an empirical approach to affective response in space, and aims at generating bodies of quantitative data regarding the correlations between spatial features and emotional states. This paper demonstrates a machine-learning driven computational framework that draws upon training data sets to predict the 'affective impact' of designed enclosures. For demonstration, it has been scripted as a Rhinoceros + Grasshopper based design tool that uses existing training data collected by the author. The data comprises of the spatial parameters of Enclosure Volume (V), Length/Width ratio (P) and Window Area/Total Internal Surface Area ratio (D) - and the corresponding emotional parameters of Valence and Arousal. The test values of these parameters are computed by defining the components of the test enclosure (walls, windows, floors and ceilings) in the script. Nonlinear regression components are run on the training datasets and the test input data is used to compute and display the real time predicted affective state on the circumplex model of affect.
keywords Affective Analysis; Affective Computing; Design Assistance; Machine Learning; Spatial Enclosures
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2019_265
id cdrf2019_265
authors Yue Qi, Ruqing Zhong, Benjamin Kaiser, Long Nguyen,Hans Jakob Wagner, Alexander Verl, and Achim Menges
year 2020
title Working with Uncertainties: An Adaptive Fabrication Workflow for Bamboo Structures
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_25
summary This paper presents and investigates a cyber-physical fabrication work-flow, which can respond to the deviations between built- and designed form in realtime with vision augmentation. We apply this method for large scale structures built from natural bamboo poles. Raw bamboo poles obtain evolutionarily optimized fibrous layouts ideally suitable for lightweight and sustainable building construction. Nevertheless, their intrinsically imprecise geometries pose a challenge for reliable, automated construction processes. Despite recent digital advancements, building with bamboo poles is still a labor-intensive task and restricted to building typologies where accuracy is of minor importance. The integration of structural bamboo poles with other building layers is often limited by tolerance issues at the interfaces, especially for large scale structures where deviations accumulate incrementally. To address these challenges, an adaptive fabrication process is developed, in which existing deviations can be compensated by changing the geometry of subsequent joints to iteratively correct the pose of further elements. A vision-based sensing system is employed to three-dimensionally scan the bamboo elements before and during construction. Computer vision algorithms are used to process and interpret the sensory data. The updated conditions are streamed to the computational model which computes tailor-made bending stiff joint geometries that can then be directly fabricated on-the-fly. In this paper, we contextualize our research and investigate the performance domains of the proposed workflow through initial fabrication tests. Several application scenarios are further proposed for full scale vision-augmented bamboo construction systems.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2024_409
id ecaade2024_409
authors Zarzycki, Andrzej
year 2024
title BIM-Driven Curriculum for Integrated Design Studios: Maintaining data interoperability and design flexibility
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 27–36
doi https://doi.org/10.52842/conf.ecaade.2024.2.027
summary This paper presents a curricular model for an integrated design studio focused on BIM-driven processes, satisfying the NAAB 2020's student performance criteria SC.5 and SC6. These criteria emphasize quantifiable, evidence-based design thinking by requiring the provision of "measurable environmental impacts" and "measurable outcomes of building performance." The studio, serving as a capstone project, integrates accessible design, user and regulatory requirements into building assemblies, structural and environmental systems, and life safety, underscoring the importance of measurable building performance outcomes. The adoption of computational design tools, particularly Building Information Modeling (BIM), facilitates engagement in environmental and user-focused simulations and ensures data interoperability throughout the design and post-occupancy phases. Utilizing a comprehensive set of tools, including life-cycle assessment (LCA) and energy modeling, the curriculum advances beyond simple simulations to support decision-making and multi-objective optimizations. This approach enables a new form of design thinking that incorporates a broader set of variables and considerations, encouraging students to meet various environmental impact and performance benchmarks, including LEED v.5 Certification points and Architecture 2030 energy standards. The integration of scenario simulation tools empowers students to autonomously advance their projects within a framework of constraints, marking a pedagogical shift towards faculty acting as learning facilitators and promoting student autonomy in design evaluation.
keywords building information modeling, BIM, building performance simulations, design education
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2020_183
id ecaade2020_183
authors Zhao, Jiangyang, Lombardi, Davide and Agkathidis, Asterios
year 2020
title Application of Robotic Technologies for the Fabrication Of Traditional Chinese Timber Joints
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 351-360
doi https://doi.org/10.52842/conf.ecaade.2020.2.351
summary The traditional Chinese building design was influenced by the climate and the sociogeographical conditions of the different regions in China. They were usually constructed out of wood relying on timber-joint based construction systems. Amongst the wide variety of the structural elements, the Dougong (bucket arch) is one of the most common components of traditional wooden framework buildings, presenting a high level of complexity. Parametric design and robotic technology enable new possibilities regarding its fabrication and application in contemporary architecture. Our paper will explore how the Dougong components could be reinvented through the use of parametric tools and robotic fabrication methods and thus applied to contemporary architectural structures. We will analyse and compare the properties of the original Dougong with the reinvented unit by using finite element analysis and digital optimization tools. Our findings will provide an insight into the traditional construction principles of the joint and how these can inform a design and fabrication framework for its application in contemporary buildings.
keywords Dougong joint; timber structures; parametric design; robotic fabrication; optimization algorithm
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2020_347
id caadria2020_347
authors Budig, Michael, Heckmann, Oliver, Ng Qi Boon, Amanda, Hudert, Markus, Lork, Clement and Cheah, Lynette
year 2020
title Data-driven Embodied Carbon Evaluation of Early Building Design Iterations
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 303-312
doi https://doi.org/10.52842/conf.caadria.2020.2.303
summary In the early design phases, Life Cycle Assessment can assist project stakeholders in making informed decisions on choosing structural systems and materials with an awareness of environmental sustainability through their embodied carbon content; yet embodied carbon is difficult to quantify without detailed design information in the early design stages. In response, this paper proposes a novel data-driven tool, prior to the definition of floor plan layouts to perform embodied carbon evaluation of existing building designs based on a Bayesian Neural Network (BNN) regression. The BNN is built from data drawn from existing floor plans of residential buildings, and predicts material volume and embodied carbon from generic design parameters typical in the early design stage. Users will be able to interact with the tool in Grasshopper or as an online resource, input generic design parameters, and obtain comparative visualizations based on the choice of a construction system and its environmental sustainability in a 'shoebox' interface - a simplified three-dimensional representation of a building's primary spatial units generated with the tool.
keywords Regression; Bayesian Neural Network; High-Rise Residential Buildings
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_141
id caadria2020_141
authors Dezen-Kempter, Eloisa, Mezencio, Davi Lopes, Miranda, Erica De Matos, De Sá, Danilo Pico and Dias, Ulisses
year 2020
title Towards a Digital Twin for Heritage Interpretation - from HBIM to AR visualization
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 183-191
doi https://doi.org/10.52842/conf.caadria.2020.2.183
summary Data-driven Building Information Modelling (BIM) technology has brought new tools to efficiently deal with the tension between the real and the virtual environments in the field of Architecture, Engineering, Construction, and Operation (AECO). For historic assets, BIM represents a paradigm shift, enabling better decision-making about preventive maintenance, heritage management, and interpretation. The potential application of the Historic-BIM is creating a digital twin of the asset. This paper deals with the concept of a virtual environment for the consolidation and dissemination of heritage information. Here we show the process of creating interactive virtual environments for the Pampulha Modern Ensemble designed by Oscar Niemeyer in the 1940s, and the workflow to their dissemination in an AR visualization APP. Our results demonstrate the APP feasibility to the Pampulha's building interpretation.
keywords Augmented Reality (AR); Historic Building Information Modelling (HBIM); Heritage Interpretation; Modern Architecture
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_443
id caadria2020_443
authors Abuzuraiq, Ahmed M. and Erhan, Halil
year 2020
title The Many Faces of Similarity - A Visual Analytics Approach for Design Space Simplification
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 485-494
doi https://doi.org/10.52842/conf.caadria.2020.1.485
summary Generative design methods may involve a complex design space with an overwhelming number of alternatives with their form and design performance data. Existing research addresses this complexity by introducing various techniques for simplification through clustering and dimensionality reduction. In this study, we further analyze the relevant literature on design space simplification and exploration to identify their potentials and gaps. We find that the potentials include: alleviating the choice overload problem, opening up new venues for interrelating design forms and data, creating visual overviews of the design space and introducing ways of creating form-driven queries. Building on that, we present the first prototype of a design analytics dashboard that combines coordinated and interactive visualizations of design forms and performance data along with the result of simplifying the design space through hierarchical clustering.
keywords Visual Analytics; Design Exploration; Dimensionality Reduction; Clustering; Similarity-based Exploration
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id sigradi2020_400
id sigradi2020_400
authors Agirbas, Asli
year 2020
title Pneumatic Structure with Kinetic Sub-system: A Proposal for Extraterrestrial Life
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 400-405
summary Designing for extraterrestrial life is a very up-to-date issue. However, there are many constraints in this kind of designs. Designs that provide the best solution can only be obtained by identifying these constraints very well. In this study, a design concept was developed for life in Mars by considering various constraints. This design consists of a kinetic system with pneumatic structure. The preliminary scheme of this structure, which was planned to produce as a prototype, was discussed in the scope of this study.
keywords Extraterrestrial architecture, Martian base, Pneumatic structure, Kinetic structures, Algorithmic and parametric design
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_228
id acadia20_228
authors Alawadhi, Mohammad; Yan, Wei
year 2020
title BIM Hyperreality
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 228-236.
doi https://doi.org/10.52842/conf.acadia.2020.1.228
summary Deep learning is expected to offer new opportunities and a new paradigm for the field of architecture. One such opportunity is teaching neural networks to visually understand architectural elements from the built environment. However, the availability of large training datasets is one of the biggest limitations of neural networks. Also, the vast majority of training data for visual recognition tasks is annotated by humans. In order to resolve this bottleneck, we present a concept of a hybrid system—using both building information modeling (BIM) and hyperrealistic (photorealistic) rendering—to synthesize datasets for training a neural network for building object recognition in photos. For generating our training dataset, BIMrAI, we used an existing BIM model and a corresponding photorealistically rendered model of the same building. We created methods for using renderings to train a deep learning model, trained a generative adversarial network (GAN) model using these methods, and tested the output model on real-world photos. For the specific case study presented in this paper, our results show that a neural network trained with synthetic data (i.e., photorealistic renderings and BIM-based semantic labels) can be used to identify building objects from photos without using photos in the training data. Future work can enhance the presented methods using available BIM models and renderings for more generalized mapping and description of photographed built environments.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2022_16
id ecaade2022_16
authors Bailey, Grayson, Kammler, Olaf, Weiser, Rene, Fuchkina, Ekaterina and Schneider, Sven
year 2022
title Performing Immersive Virtual Environment User Studies with VREVAL
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 437–446
doi https://doi.org/10.52842/conf.ecaade.2022.2.437
summary The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learns the relationship between building geometry, typology, and construction type with the Global Warming potential (GWP) in tons of C02 equivalent (tCO2e). The first one, a regression model, can predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly through early predictions of the structure’s material and can be used as a tool for facilitating sustainable discussions between the architect and the client.
keywords Pre-Occupancy Evaluation, Immersive Virtual Environment, Wayfinding, User Centered Design, Architectural Study Design
series eCAADe
email
last changed 2024/04/22 07:10

_id ascaad2021_142
id ascaad2021_142
authors Bakir, Ramy; Sara Alsaadani, Sherif Abdelmohsen
year 2021
title Student Experiences of Online Design Education Post COVID-19: A Mixed Methods Study
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 142-155
summary This paper presents findings of a survey conducted to assess students’ experiences within the online instruction stage of their architectural education during the lockdown period caused by the COVID-19 pandemic between March and June 2020. The study was conducted in two departments of architecture in both Cairo branches of the Arab Academy for Science, Technology & Maritime Transport (AASTMT), Egypt, with special focus on courses involving a CAAD component. The objective of this exploratory study was to understand students’ learning experiences within the online period, and to investigate challenges facing architectural education. A mixed methods study was used, where a questionnaire-based survey was developed to gather qualitative and quantitative data based on the opinions of a sample of students from both departments. Findings focus on the qualitative component to describe students’ experiences, with quantitative data used for triangulation purposes. Results underline students’ positive learning experiences and challenges faced. Insights regarding digital tool preferences were also revealed. Findings are not only significant in understanding an important event that caused remote architectural education in Egypt but may also serve as an important stepping-stone towards the future of design education in light of newly-introduced disruptive online learning technologies made necessary in response to lockdowns worldwide
series ASCAAD
email
last changed 2021/08/09 13:13

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_412468 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002