CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 650

_id caadria2020_025
id caadria2020_025
authors Park, Hyoung-June
year 2020
title Stylistic Reproductions of Mondrian's Composition with Red, Yellow, and Blue
doi https://doi.org/10.52842/conf.caadria.2020.2.133
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 133-142
summary Shape grammars are employed for analyzing and delineating the formal structure of Mondrian's painting. The proportionality (dynamic equilibrium or commensurability) embedded in the structure of the artifact is optimized with Genetic Algorithms. The optimization process introduced in this paper allows a user's intervention to provide a guided search for finding stylistic reproductions of the original. Two types of the stylistic reproductions are conducted: 1) generating formal descendants of the original, and 2) tuning the original structure. The implementation of the reproductions is described also.
keywords Mondrian; Style; Shape Grammar; Proportionality; Genetic Algorithms
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2020_009
id caadria2020_009
authors Wang, Likai, Chen, Kian Wee, Janssen, Patrick and Ji, Guohua
year 2020
title Algorithmic generation of architectural Massing Models for building design optimisation - Parametric Modelling Using Subtractive and Additive Form Generation Principles
doi https://doi.org/10.52842/conf.caadria.2020.1.385
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 385-394
summary Using performance-based optimisation to explore unknown design solutions space has become widely acknowledged and considered an efficient approach to designing high-performing buildings. However, the lack of design diversity in the design space defined by the parametric model often confines the search of the optimisation process to a family of similar design variants. In order to overcome this weakness, this paper presents two parametric massing generation algorithms based on the additive and subtractive form generation principles. By abstracting the rule of these two principles, the algorithms can generate diverse building massing design alternatives. This allows the algorithms to be used in performance-based optimisation for exploring a wide range of design alternatives guided by various performance objectives. Two case studies of passive solar energy optimisation are presented to demonstrate the efficacy of the algorithm in helping architects achieve an explorative performance-based optimisation process.
keywords parametric massing algorithms; performance-based optimisation; design exploration; solar irradiation
series CAADRIA
email
last changed 2022/06/07 07:58

_id cdrf2019_79
id cdrf2019_79
authors Guyi Yi1 and Ilaria Di Carlo
year 2020
title Cyborgian Approach of Eco-interaction Design Based on Machine Intelligence and Embodied Experience
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_8
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary The proliferation of digital technology has swelled the amount of time people spent in cyberspace and weakened our sensibility of the physical world. Human beings in this digital era are already cyborgs as the smart devices have become an integral part of our life. Imagining a future where human totally give up mobile phones and embrace nature is neither realistic nor reasonable. What we should aim to explore is the opportunities and capabilities of digital technology in terms of fighting against its own negative effect - cyber addiction, and working as a catalyst that re-embeds human into outdoor world. Cyborgian systems behave through embedded intelligence in the environment and discrete wearable devices for human. In this way, cyborgian approach enables designers to take advantages of digital technologies to achieve two objectives: one is to improve the quality of environment by enhancing our understanding of nonhuman creatures; the other is to encourage a proper level of human participation without disturbing eco-balance. Finally, this paper proposed a cyborgian eco-interaction design model which combines top-down and bottom-up logics and is organized by the Internet of Things, so as to provide a possible solution to the concern that technologies are isolating human and nature.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_024
id caadria2020_024
authors Zheng, Hao and Ren, Yue
year 2020
title Architectural Layout Design through Simulated Annealing Algorithm
doi https://doi.org/10.52842/conf.caadria.2020.1.275
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 275-284
summary Simulated Annealing is an artificial intelligence algorithm for finding the optimal solution of a proposition in an ample search space, which is based on the similarity between the physical annealing process of solid materials and the combinatorial optimization problem. In architectural layout design, although architects usually rely on their subjective design concepts to arrange buildings in a site, the judging criteria hidden in their design concepts are understandable. They can be summarized and parameterized as a combination of penalty and reward functions. By defining the functions to evaluate a design plan, then using the simulated annealing algorithm to search the optimal solution, the plan can be optimized and generated automatically. Six penalty and reward functions are proposed with different parameter weights in this article, which become a guideline for architectural layout design, especially for residential area planning. Then the results of several tests are shown, in which the parameter weights are adjusted, and the importance of each function is integrated. Lastly, a recommended weight and "temperature" setting are proposed, and a system of generating architectural layout is invented, which releases architects from building arranging work in an early stage.
keywords Architectural Layout; Simulated Annealing; Artificial Intelligence; Computational Design
series CAADRIA
email
last changed 2022/06/07 07:57

_id ascaad2021_041
id ascaad2021_041
authors Taºdelen, Sümeyye; Leman Gül
year 2021
title Social Network Analysis of Digital Design Actors: Exploratory Study Covering the Journal Architectural Design
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 280-292
summary This research asks the question of how the design knowledge production mechanism is processed differentiates digital design actors from each other in the social media/professional and academic fields of architecture. Due to the broad nature of the research question, the study focuses on academia and academia-related media through prominent architect-authors and subject titles in the literature. Bourdieu’s concept of capital is introduced, in which cultural and symbolic capital are considered part of the production values of digital design actors. Digital design actors use image-based social media tools such as Instagram effectively. The paper uses two methods: the first is a bibliographical analysis of author-texts, and the second is a social network analysis. By employing the keyword-based search from the Web of Science database, this study has managed to extract papers with full records (citations, keywords, and abstracts), with the journal Architectural Design having most publications. Considering that both academicians and professionals contribute to publications in Architectural Design, we selected all its publications between 2010-2020 for bibliometric analysis. These analysis techniques include the bibliometric network analyses and social network analysis with the focus on visualizing the algorithms and statistical calculations of well-established metrics. The research reveals the most critical nodes of the bibliometric network by calculating the appropriate central metrics. The network formed by the selected Instagram accounts of digital design actors are shown to be a small-scale network group, while the hashtags of digital design concepts are more numerous than the digital design actors.
series ASCAAD
email
last changed 2021/08/09 13:11

_id sigradi2021_246
id sigradi2021_246
authors Turazzi Luciano, Patrícia, Stofella, Arthur, Klein Taparello, Gladys Ilka and Vaz, Carlos Eduardo Verzola
year 2021
title Designing Possible Futures: An Approach to Design Fiction in Architecture
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 115–126
summary Among several possible approaches for design process, Design Fiction stimulates the production of fictional universes in the search for innovation, exploration and creative provocation for the development of built environments. The aim of this article is to present results of the exploration of this approach in the context of architectural projects, based on the works of Markussen and Knutz (2013) and Plowright (2020). The work proposal for two workshops through webconference was based on fiction works pre-selected, from which students could choose at least one to use its narrative as a foundation to develop their own project. Thus, all three projects developed explore socio-technical, ecological and emotional characteristics of the inhabitants of created narratives, bringing them closer to an approach that has a greater focus on the relationship and interaction between user and built environment.
keywords Design Fiction, Arquitetura, Processo de Projeto, Futurismo, Ficçao Projetual
series SIGraDi
email
last changed 2022/05/23 12:10

_id caadria2020_375
id caadria2020_375
authors Kalo, Ammar, Tracy, Kenneth and Tam, Mark
year 2020
title Robotic Sand Carving - Machining Techniques Derived from a Traditional Balinese Craft
doi https://doi.org/10.52842/conf.caadria.2020.2.443
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 443-452
summary This paper presents research aimed at translating Ukiran Pasir Melela, traditional Balinese sand carving, into a new robotic-enabled framework for rapidly carving stiff but uncured cement sand blocks to create free-form and architecturally scalable unique volumetric elements. The research aims to reconsider vernacular materials and craft through their integration robotic manufacturing processes and how this activity can provide localized, low energy manufacturing solutions for building in the Anthropocene.Balinese sand carving shows potential advantages over current, and rather environmentally damaging, machining process primarily using soft materials state to make deep, smooth cuts into material with little torque. Transferring this manual and low-impact craft to robotic-enabled fabrication leverages heuristic knowledge developed over decades and opens possibilities for expanding and transforming these capabilities to increase the variability of potential future applications.
keywords Robotic Fabrication; Computational Design; Traditional Craft
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2020_008
id caadria2020_008
authors Wang, Likai, Chen, Kian Wee, Janssen, Patrick and Ji, Guohua
year 2020
title Enabling Optimisation-based Exploration for Building Massing Design - A Coding-free Evolutionary Building Massing Design Toolkit in Rhino-Grasshopper
doi https://doi.org/10.52842/conf.caadria.2020.1.255
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 255-264
summary This paper presents an evolutionary design toolkit for performance-based building massing design optimisation. The toolkit is aimed to assist architects in exploring a wide range of building massing design alternatives guided by various performance objectives, thereby encouraging architects to incorporate evolutionary design optimisation for enriching design ideation at the outset of the design process. The toolkit is implemented in the Rhino-Grasshopper environment and includes components of a diversity-guided evolutionary algorithm and two pre-defined parametric models capable of generating a wide range of massing designs. The evolutionary algorithm can yield diverse design variants from the optimisation process and present more informative results with higher design differentiation. The pre-defined parametric models require minimal customisation from the architects. By using the toolkit, architects can readily explore high-performing building design with performance-based design optimisation with ease, and the coding-free optimisation workflow also streamlines the design process.
keywords evolutionary design; building massing design; performance-based design; design process; design exploration
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia20_638
id acadia20_638
authors Claypool, Mollie; Jimenez Garcia, Manuel; Retsin, Gilles; Jaschke, Clara; Saey, Kevin
year 2020
title Discrete Automation
doi https://doi.org/10.52842/conf.acadia.2020.1.638
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 638-647.
summary Globally, the built environment is inequitable. And while construction automation is often heralded as the solution to labor shortages and the housing crisis, such methods tend to focus on technology, neglecting the wider socioeconomic contexts. Automated Architecture (AUAR), a spinoff of AUAR Labs at The Bartlett School of Architecture, UCL, asserts that a values-centered, decentralized approach to automation centered around local communities can begin to address this material hegemony. The paper introduces and discusses AUAR’s platform-based framework, Discrete Automation, which subverts the status quo of automation that excludes those who are already disadvantaged into an inclusive network capable of providing solutions to both the automation gap and the assembly problem. Through both the wider context of existing modular housing platforms and issues of the current use of automated technologies in architectural production, Discrete Automation is discussed through the example of Block Type A, a discrete timber building system, which in conjunction with its combinatorial app constitutes the base of a community-led housing platform developed by AUAR. Built case studies are introduced alongside a discussion of the applied methodologies and an outlook on the platform’s potential for scalability in an equitable, sustainable manner.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_564
id acadia20_564
authors Cutajar, Sacha; Costalonga Martins, Vanessa; van der Hoven, Christo; Baszyñski, Piotr; Dahy, Hanaa
year 2020
title Towards Modular Natural Fiber-Reinforced Polymer Architecture
doi https://doi.org/10.52842/conf.acadia.2020.1.564
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 564-573.
summary Driven by the ecological crisis looming over the 21st century, the construction sector must urgently seek alternative design solutions to current building practices. In the wake of emergent digital technologies and novel material strategies, this research proposes a lightweight architectural solution using natural fiber-reinforced polymers (NFRP), which elicit interest for their inherent renewability as compared to high-performance yarns. Two associated fabrication techniques are deployed: tailored fiber placement (TFP) and coreless filament winding (CFW), both favored for their additive efficiencies granted by strategic material placement. A hypothesis is formed, postulating that their combination can leverage the standalone complexities of molds and frames by integrating them as active structural elements. Consequently, the TFP enables the creation of a 2D stiffness-controlled preform to be bent into a permanent scaffold for winding rigid 3D fiber bodies via CFW. A proof of concept is generated via the small-scale prototyping and testing of a stool, with results yielding a design of 1 kg capable of carrying 100 times its weight. Laying the groundwork for a scaled-up architectural proposal, the prototype instigates alterations to the process, most notably the favoring of a modular global design and lapped preform technique. The research concludes with a discussion on the resulting techno-implications for automation, deployment, material life cycle, and aesthetics, rekindling optimism towards future sustainable practices.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_290
id ecaade2020_290
authors Elesawy, Amr Alaaeldin, Signer, Mario, Seshadri, Bharath and Schlueter, Arno
year 2020
title Aerial Photogrammetry in Remote Locations - A workflow for using 3D point cloud data in building energy modeling
doi https://doi.org/10.52842/conf.ecaade.2020.1.723
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 723-732
summary Building energy modelling (BEM) results are highly affected by the surrounding environment, due to the impact of solar radiation on the site. Hence, modelling the context is a crucial step in the design process. This is challenging when access to the geometrical data of the built and natural environment is unavailable as in remote villages. The acquisition of accurate data through conventional surveying proves to be costly and time consuming, especially in areas with a steep and complex terrain. Photogrammetry using drone-captured aerial images has emerged as an innovative solution to facilitate surveying and modeling. Nevertheless, the workflow of translating the photogrammetry output from data points to surfaces readable by BEM tools proves to be tedious and unclear. This paper presents a streamlined and reproducible approach for constructing accurate building models from photogrammetric data points to use for architectural design and energy analysis in early design stage projects.
keywords Building Energy Modeling; Photogrammetry; 3D Point Clouds; Low-energy architecture; Multidisciplinary design; Education
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_456
id ecaade2020_456
authors Farinea, Chiara, Awad, Lana, Dubor, Alex and El Atab, Mohamad
year 2020
title Integrating biophotovoltaic and cyber-physical technologies into a 3D printed wall
doi https://doi.org/10.52842/conf.ecaade.2020.2.463
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 463-472
summary The research presented in this paper investigates the development of "3D printed ceramic green wall", a technological Nature Based Solution (NBS) aimed at regenerating urban areas by improving spatial quality and sustainability through clean and autonomous energy production. Building upon previous research, the challenge of this system is to adapt additive manufacturing processes of ceramic 3D printing with biophotovoltaic systems while simultaneously developing digital and cyber-physical frameworks to generate site and user responsive design and autonomous solutions that optimize system performance and energy generation. The paper explores the complex design negotiations between these drivers, focusing particularly on their performance optimization, and finally highlights the system potential as exemplified through a successful implementation of a 1:1 site responsive wall prototype.
keywords Nature based solutions; biophotovoltaic systems; additive manufacturing; responsive design; cyber-physical networks; augmented reality
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac202018204
id ijac202018204
authors Nathansohn, Nof; Molly Mason, David Allen White, Hugh Timothy Ebdy, Yaara Yacoby, Hila Sharabi, and Lawrence Sass
year 2020
title Design for disassembly: Using temporary fabrication for land politics in the Negev
source International Journal of Architectural Computing vol. 18 - no. 2, 155-173
summary Political conflicts have increasingly displaced people from their homes, necessitating various forms of temporary structures and housing. However, these shelters are often one-size-fits-all and do not take into account the individual requirements, family structures, or cultural needs of these communities. This article explores how digital fabrication can be used to empower disenfranchised communities to act as their own architects. Because the police demolish the structures in Al Araqib every 3 weeks, the residents have to rebuild their structures, and appropriate architecture as a resistance tool, and not only as a housing solution. This circumstance allows us to develop a structure designed primarily for the condition of rapid disassembly that can additionally be produced with a low-tech setup of a mobile computer numerical control router. Through this case study with the Bedouin village Al Araqib in the Negev Desert, we introduce the term community-specific design, present our methodology for designing and fabricating a temporary structure in collaboration with the community, and outline the logistics for a future mobile infrastructure. Beyond aiding the Bedouin’s fight for justice, our intention as designers, acutely aware of the power of technology and architecture, is to harness both physical and digital tools in an effort to create innovative systems that can be leveraged by unrecognized populations struggling for cultural survival.
keywords Digital fabrication, temporary structur
series journal
email
last changed 2020/11/02 13:34

_id acadia23_v1_174
id acadia23_v1_174
authors Nejur, Andrei
year 2023
title NoeudAL Pavilion: Ultralight folded nodes for bespoke geometries
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 174-179.
summary This research project, conducted at the University of Montreal School of Architecture, presents an innovative approach to the construction of reticulated structures, focusing on the development and application of a novel, ultralight aluminum node. The node, constructed from a folded, laser-cut, 1-mm aluminum sheet, is designed to accommodate wooden linear members with varied rectangular sections, making it adaptable to bespoke geometries and low valence nodes. This innovative design offers a solution to the long-standing challenge in the construction industry of balancing cost, customization, and weight for reticulated structures through novel node designs (Abdelwahab and Tsavdaridis 2019; Dyvik et al. 2023; Chilton 2007; Rochas 2014; Hassani et al. 2020).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2020_270
id caadria2020_270
authors Randall, Madison, Kordrostami, Tina and Makki, Mohammed
year 2020
title The Taikoo Shing Superblock: Addressing urban stresses through sequential evolutionary simulations
doi https://doi.org/10.52842/conf.caadria.2020.1.415
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 415-424
summary The multiplicity of networks, connections and relationships that exist in every city - complex and varied - are inherent to the urban fabric. Variation within the built form is integral to ensure adaptability to environmental and climatic conditions imposed on cities over generations. This research aims to highlight the benefits of utilizing sequential evolutionary simulations, to arrive at a more resolved solution-set that addresses urban challenges of the Taiko Shing superblock in Hong Kong.
keywords Hong Kong; Urban; Sequential Simulations; Evolution; Computation
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2024_60
id ecaade2024_60
authors Wan, Zijun; Sun, Shuaibing; Meng, Fanjing; Yan, Yu
year 2024
title How Augment Reality Support Public Participation in the Urban Design Decision-Making: A ten - year literature review
doi https://doi.org/10.52842/conf.ecaade.2024.2.455
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 455–464
summary Emerging applications of AR have demonstrated its powerful visualization capabilities, which is a potential solution to enhance public participation in the urban design process. However, there is still a lack of complete understanding of how AR gets involved in this decision-making process. Therefore, this paper reviews 33 empirical studies relating to the topic through the four steps of “PRISMA”. The results indicate that the quantity and quality of research is increasing yearly. As AR technology progresses, the techniques and research methods used in those studies show a trend toward diversification and customization; this has also led to a shift in the scale of urban design from large and abstract to small and concrete. In terms of content, the topics have gradually changed from “people group” to “technology”, and then to “environment”. Notably, a small number of cases in tangible interaction and multi-user collaboration have emerged from 2020 — areas showing great promise. In terms of user assessments, most studies give positive feedback, but there are currently concerns about problems in poor AR visualizations, privacy risks, and the social inequality caused by technical affordance.
keywords Augment reality, Urban design and planning, Public participation, Collaborative and participative design, Design decision-making
series eCAADe
email
last changed 2024/11/17 22:05

_id cdrf2019_134
id cdrf2019_134
authors Zhen Han, Wei Yan, and Gang Liu
year 2020
title A Performance-Based Urban Block Generative Design Using Deep Reinforcement Learning and Computer Vision
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_13
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary In recent years, generative design methods are widely used to guide urban or architectural design. Some performance-based generative design methods also combine simulation and optimization algorithms to obtain optimal solutions. In this paper, a performance-based automatic generative design method was proposed to incorporate deep reinforcement learning (DRL) and computer vision for urban planning through a case study to generate an urban block based on its direct sunlight hours, solar heat gains as well as the aesthetics of the layout. The method was tested on the redesign of an old industrial district located in Shenyang, Liaoning Province, China. A DRL agent - deep deterministic policy gradient (DDPG) agent - was trained to guide the generation of the schemes. The agent arranges one building in the site at one time in a training episode according to the observation. Rhino/Grasshopper and a computer vision algorithm, Hough Transform, were used to evaluate the performance and aesthetics, respectively. After about 150 h of training, the proposed method generated 2179 satisfactory design solutions. Episode 1936 which had the highest reward has been chosen as the final solution after manual adjustment. The test results have proven that the method is a potentially effective way for assisting urban design.
series cdrf
email
last changed 2022/09/29 07:51

_id sigradi2020_392
id sigradi2020_392
authors Fialho, Beatriz Campos; Codinhoto, Ricardo; Fabricio, Márcio Minto
year 2020
title BIM and IoT for the AEC Industry: A systematic literature mapping
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 392-399
summary The AEC industry has been facing a digital transformation for improving services involved in buildings lifecycle, fostered by two disruptive technologies: Building Information Modelling (BIM) and Internet of Things (IoT). However, the literature lacks discussions regarding applications and challenges of BIM and IoT systems in the AEC. This Systematic Literature Mapping addresses this gap through search, analysis, and classification of 75 journal article abstracts published between 2015 and 2019. An increase of articles over the period is observed, predominantly with technical and processual solutions for Construction and Operation and Maintenance. The interoperability of data is a key challenge to organizations.
keywords Building Information Modelling, Internet of Things, Integration, Network, Smart Cities
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2020_304
id caadria2020_304
authors Fischer, Thomas and Wortmann, Thomas
year 2020
title From Geometrically to Algebraically Described Hyperbolic Paraboloids - An optimisation-based analysis of the Philips Pavilion
doi https://doi.org/10.52842/conf.caadria.2020.1.435
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 435-444
summary In this paper, we present a procedure to derive algebraic parameters from geometrically described truncated hyperbolic paraboloid surfaces. The procedure uses parametric modelling and optimisation to converge on close algebraic approximations of hyperbolic paraboloid geometry through a successive breakdown of vast search spaces. We illustrate this procedure with its application to the surfaces of the 1958 Philips Pavilion designed by Le Corbusier and Iannis Xenakis. This application yielded previously unavailable parametric data of this building in algebraic form. It highlights the power of the parametric design and optimisation toolkit, both in terms of automated search and epistemological enablement.
keywords parametric analysis; optimisation; ruled surfaces; hyperbolic paraboloid; geometry reconstruction
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_875976 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002