CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 581

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ijac202018206
id ijac202018206
authors Mitterberger, Daniela and Tiziano Derme
year 2020
title Digital soil: Robotically 3D-printed granular bio-composites
source International Journal of Architectural Computing vol. 18 - no. 2, 194-211
summary Organic granular materials offer a valid alternative for non-biodegradable composites widely adopted in building construction and digital fabrication. Despite the need to find alternatives to fuel-based solutions, current material research in architecture mostly supports strategies that favour predictable, durable and homogeneous solutions. Materials such as soil, due to their physical properties and volatile nature, present new challenges and potentials to change the way we manufacture, built and integrate material systems and environmental factors into the design process. This article proposes a novel fabrication framework that combines high-resolution three-dimensional- printed biodegradable materials with a novel robotic-additive manufacturing process for soil structures. Furthermore, the research reflects on concepts such as affordance and tolerance within the field of digital fabrication, especially in regards to bio-materials and robotic fabrication. Soil as a building material has a long tradition. New developments in earth construction show how earthen buildings can create novel, adaptive and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough geometrical articulations. This research proposes to use a robotic binder-jetting process that creates novel organic bio-composites to overcome such limitations of common earth constructions. In addition, this article shows how biological polymers, such as polysaccharides-based hydrogels, can be used as sustainable, biodegradable binding agents for soil aggregates. This article is divided into four main sections: architecture and affordance; tolerance versus precision; water-based binders; and robotic fabrication parameters. Digital Soil envisions a shift in the design practice and digital fabrication that builds on methods for tolerance handling. In this context, material and geometrical properties such as material porosity, hydraulic conductivity and natural evaporation rate affect the architectural resolution, introducing a design process driven by matter. Digital Soil shows the potential of a fully reversible biodegradable manufacturing process for load-bearing architectural elements, opening up new fields of application for sustainable material systems that can enhance the ecological potential of architectural construction.
keywords Robotic fabrication, adaptive materials, water-based fabrication, affordance, organic matter, additive manufacturing
series journal
email
last changed 2020/11/02 13:34

_id acadia20_290
id acadia20_290
authors Stuart-Smith, Robert; Danahy, Patrick; Revelo La Rotta, Natalia
year 2020
title Topological and Material Formation
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 290-299.
doi https://doi.org/10.52842/conf.acadia.2020.1.290
summary Extrusion-based additive manufacturing (AM) is gaining traction in the construction industry, offering lower environmental and economic costs through reductions in material and production time. AM designs achieve these reductions by increasing topological and geometric complexity, and through variable material distribution via custom-programmed robot tool paths. Limited approaches are available to develop AM building designs within a topologically free design search or to leverage material affects relative to structural performance. Established methods such as topological structural optimization (TSO) operate primarily within design rationalization, demonstrating less formal or aesthetic diversity than agent-based methods that exhibit behavioral character. While material-extrusion gravitational affects have been explored in AM research using viscous materials such as concrete and ceramics, established methods are not sufficiently integrated into simulation and structural analysis workflows. A novel three-part method is proposed for the design and simulation of extrusion-based AM that includes topoForm, an evolutionary multi-agent software capable of generating diverse topological designs; matForm, an agent-based AM robot tool-path generator that is geometrically agnostic and adapts material effects to local structural and geometric data; and matSim, a material-physics simulation environment that enables high-resolution AM material effects to be simulated and structurally and aesthetically analyzed. The research enables designers to incorporate and simulate material behavior prior to fabrication and produce instructions suitable for industrial robot AM. The approach is demonstrated in the generative design of four AM column-like elements.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
doi https://doi.org/10.52842/conf.acadia.2020.1.516
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_564
id acadia20_564
authors Cutajar, Sacha; Costalonga Martins, Vanessa; van der Hoven, Christo; Baszyñski, Piotr; Dahy, Hanaa
year 2020
title Towards Modular Natural Fiber-Reinforced Polymer Architecture
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 564-573.
doi https://doi.org/10.52842/conf.acadia.2020.1.564
summary Driven by the ecological crisis looming over the 21st century, the construction sector must urgently seek alternative design solutions to current building practices. In the wake of emergent digital technologies and novel material strategies, this research proposes a lightweight architectural solution using natural fiber-reinforced polymers (NFRP), which elicit interest for their inherent renewability as compared to high-performance yarns. Two associated fabrication techniques are deployed: tailored fiber placement (TFP) and coreless filament winding (CFW), both favored for their additive efficiencies granted by strategic material placement. A hypothesis is formed, postulating that their combination can leverage the standalone complexities of molds and frames by integrating them as active structural elements. Consequently, the TFP enables the creation of a 2D stiffness-controlled preform to be bent into a permanent scaffold for winding rigid 3D fiber bodies via CFW. A proof of concept is generated via the small-scale prototyping and testing of a stool, with results yielding a design of 1 kg capable of carrying 100 times its weight. Laying the groundwork for a scaled-up architectural proposal, the prototype instigates alterations to the process, most notably the favoring of a modular global design and lapped preform technique. The research concludes with a discussion on the resulting techno-implications for automation, deployment, material life cycle, and aesthetics, rekindling optimism towards future sustainable practices.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_060
id caadria2020_060
authors Lesna, Joanna Maria and Nicholas, Paul
year 2020
title De gradus - Programming heterogeneous performance of functionally graded bio-polymers for degradable agricultural shading structures.
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 383-392
doi https://doi.org/10.52842/conf.caadria.2020.2.383
summary This paper presents an holistic approach to the digital design and fabrication of fungi- and algae-based biopolymers, based on studies and simulations of material properties and post-fabrication behavior. The research is motivated by the problem of plastic waste, the need to create more sustainable manufacturing processes, and the opportunity for material composition and organization to be informed by performance, leading to homogenous, complex and integral architectural elements for temporary architecture of agricultural shading systems. The paper details design and specification methods for functionally graded biopolymer panels, as well as fabrication methods through the making of prototypical built elements. The research details parallel trajectories of: material exploration made out of renewable and biodegradable resources available and abundant in every habitat on the earth; advancement in tools and methods for in-situ robotic additive manufacturing of viscous bio-polymers; development of the strategy for functional grading of the material properties to optimize site specificity and material distribution, and to reduce building material waste. It presents comparative material characterizations, an integrated simulation-based approach to support the process of programming localized performance, and architectural application tested via full-scale prototypes.
keywords functionally graded material; bio-polymer; programmable matter; robotic farbication; multiscale modeling
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2020_377
id sigradi2020_377
authors Xu, Weishun; Huang, Zixun
year 2020
title Robotic Fabrication of Sustainable Hybrid Formwork with Clay and Foam for Concrete Casting
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 377-383
summary This paper presents a hybrid formwork fabrication method utilizing additive manufacturing with clay on top of curved foam surfaces robotically fabricated with hot wire. The primary focus of this study is to develop a relatively efficient and highly sustainable formwork manufacturing method capable of producing geometrically complex modular concrete building components. The method leverages fluidity and recyclability of clay to produce uniquely shaped, free-form parts of the mold, and reduces overall production time by using foam for shared mold support/enclosure. A Calibration and tool path generating method based on computational modeling to integrate the two systems are also subsequently developed.
keywords Robotic fabrication, Hybrid formwork, Mass customization, Clay printing, Foam cutting
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_172
id ecaade2020_172
authors Leder, Samuel, Weber, Ramon, Vasey, Lauren, Yablonina, Maria and Menges, Achim
year 2020
title Voxelcrete - Distributed voxelized adaptive formwork
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 433-442
doi https://doi.org/10.52842/conf.ecaade.2020.2.433
summary Advances in computational form finding and simulation enable the creation of highly efficient structurally aware freeform geometries. Using significantly less material than standardized building elements there are significant challenges in their materialization. We present Voxelcrete, a discrete, voxel-based, reconfigurable slip formwork system for the creation of non-standard concrete structures. We aim to transition from highly individualized and complex formworks tailored for individual structures to simple formworks that can be reused and reconfigured to realize a variety of designs. Voxelcrete is a robotically tended formwork system in which modular formwork units are iteratively arranged for continuous casts of concrete. The system allows for the production of large scale concrete objects using reconfigurable, adaptive formwork. This paper shows the conceptualization and development of the system and expands on the existing notion of adaptive formwork
keywords Reconfigurable Formwork; Concrete Construction; Robotic Fabrication; Voxels; Discrete Architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia20_66
id acadia20_66
authors Aviv, Dorit; Wang, Zherui; Meggers, Forrest; Ida, Aletheia
year 2020
title Surface Generation of Radiatively-Cooled Building Skin for Desert Climate
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 66-73.
doi https://doi.org/10.52842/conf.acadia.2020.1.066
summary A radiatively cooled translucent building skin is developed for desert climates, constructed out of pockets of high heat-capacity liquids. The liquids are contained by a wavelength-selective membrane enclosure, which is transmissive in the infrared range of electromagnetic radiation but reflective in the shortwave range, and therefore prevents overheating from solar radiation and at the same time allows for passive cooling through exposure of its thermal mass to the desert sky. To assess the relationship between the form and performance of this envelope design, we develop a feedback loop between computational simulations, analytical models, and physical tests. We conduct a series of simulations and bench-scale experiments to determine the thermal behavior of the proposed skin and its cooling potential. Several materials are considered for their thermal storage capacity. Hydrogel cast into membrane enclosures is tested in real climate conditions. Slurry phase change materials (PCM) are also considered for their additional heat storage capacity. Challenges of membrane welding patterns and nonuniform expansion of the membrane due to the weight of the enclosed liquid are examined in both digital simulations and physical experiments. A workflow is proposed between the radiation analysis based on climate data, the formfinding simulations of the elastic membrane under the liquid weight, and the thermal storage capacity of the overall skin.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_432
id ecaade2020_432
authors Fragkia, Vasiliki and Worre Foged, Isak
year 2020
title Methods for the Prediction and Specification of Functionally Graded Multi-Grain Responsive Timber Composites
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 585-594
doi https://doi.org/10.52842/conf.ecaade.2020.2.585
summary The paper presents design-integrated methods for high-resolution specification and prediction of functionally graded wood-based thermal responsive composites, using machine learning. The objective is the development of new circular design workflow, employing robotic fabrication, in order to predict fabrication files linked to material performance and design requirements, focused on application for intrinsic responsive and adaptive architectural surfaces. Through an experimental case study, the paper explores how machine learning can form a predictive design framework where low-resolution data can solve material systems at high resolution. The experimental computational and prototyping studies show that the presented image-based machine learning method can be adopted and adapted across various stages and scales of architectural design and fabrication. This in turn allows for a design-per-requirement approach that optimizes material distribution and promotes material economy.
keywords material specification; responsive timber composites; machine learning; robotic fabrication; building envelopes
series eCAADe
email
last changed 2022/06/07 07:50

_id cdrf2019_297
id cdrf2019_297
authors H. Mohamed, D. W. Bao, and R. Snooks
year 2020
title Super Composite: Carbon Fibre Infused 3D Printed Tectonics
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_28
summary This research posits an innovative process of embedding carbon fibre as the primary structure within large-scale polymer 3D printed intricate architectural forms. The design and technical implications of this research are explored and demonstrated through two proto-architectural projects, Cloud Affects and Unclear Cloud, developed by the RMIT Architecture Snooks Research Lab. These projects are designed through a tectonic approach that we describe as a super composite – an approach that creates a compression of tectonics through algorithmic selforganisation and advanced manufacturing. Framed within a critical view of the lineage of polymer 3D printing and high tech fibres in the field of architectural design, the research outlines the limitations of existing robotic processes employed in contemporary carbon fibre fabrication. In response, the paper proposes an approach we describe asInfused Fibre Reinforced Plastic (IFRP) as a novel fabrication method for intricate geometries. This method involves 3D printing of sacrificial formwork conduits within the skin of complex architectural forms that are infused with continuous carbon fibre structural elements. Through detailed observation and critical review of Cloud Affects and Unclear Cloud (Fig. 2), the paper assesses innovations and challenges of this research in areas including printing, detailing, structural analysis and FEA modelling. The paper notes how these techniques have been refined through the iterative design of the two projects, including the development of fibre distribution mapping to optimise the structural performance.
series cdrf
email
last changed 2022/09/29 07:51

_id cdrf2019_159
id cdrf2019_159
authors Hang Zhang and Ye Huang
year 2020
title Machine Learning Aided 2D-3D Architectural Form Finding at High Resolution
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_15
summary In the past few years, more architects and engineers start thinking about the application of machine learning algorithms in the architectural design field such as building facades generation or floor plans generation, etc. However, due to the relatively slow development of 3D machine learning algorithms, 3D architecture form exploration through machine learning is still a difficult issue for architects. As a result, most of these applications are confined to the level of 2D. Based on the state-of-the-art 2D image generation algorithm, also the method of spatial sequence rules, this article proposes a brand-new strategy of encoding, decoding, and form generation between 2D drawings and 3D models, which we name 2D-3D Form Encoding WorkFlow. This method could provide some innovative design possibilities that generate the latent 3D forms between several different architectural styles. Benefited from the 2D network advantages and the image amplification network nested outside the benchmark network, we have significantly expanded the resolution of training results when compared with the existing form-finding algorithm and related achievements in recent years
series cdrf
email
last changed 2022/09/29 07:51

_id acadia20_506
id acadia20_506
authors Khalilbeigi Khameneh, Arman; Mottaghi, Esmaeil; Ghazvinian, Ali; Kalantari, Saeede
year 2020
title Con-Create
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 506-515.
doi https://doi.org/10.52842/conf.acadia.2020.1.506
summary Net structures, because of their minimal material waste and intuitive aesthetics, are gaining more interest recently. There are various efforts to redesign the tensile- and compression-only structures, as the computational tools and novel materials have broadened the scope of geometries possible to construct. However, the fabrication process of these structures faces different challenges, especially for mass construction. Some of these challenges are related to the technology and equipment utilized for materializing these complicated forms and geometries. Working with concrete as a quickly forming material for these irregular forms seems promising. Nevertheless, using this material has difficulties, including the preparation of formworks and joints, material reinforcement, structural behavior in the fresh state, and the assembly procedure. This paper introduces a method based on computational design and geometrical solutions to address some of these challenges. The goal is to shift the complexity of construction from the high-tech equipment used in the fabrication stage to integrating design and fabrication through a hierarchical system made entirely by affordable 2D CNC laser cutters. The stages of developing the method and the process of designing and building an architectural size proof-of-concept prototype by the proposed method are discussed. The efficiency of the method has been shown by comparing the designed prototype with the Con-Create Pavilion.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2019_124
id cdrf2019_124
authors Maider Llaguno-Munitxa and Elie Bou-Zeid
year 2020
title Sensing the Environmental Neighborhoods Mobile Urban Sensing Technologies (MUST) for High Spatial Resolution Urban Environmental Mapping
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_12
summary Given the benefits of fine mapping of large urban areas affordably, mobile environmental sensing technologies are becoming increasingly popular to complement the traditional stationary weather and air quality sensing stations. However the reliability and accuracy of low-cost mobile urban technologies is often questioned. This paper presents the design of a fast-response, autonomous and affordable Mobile Urban Sensing Technology (MUST) for the acquisition of high spatial resolution environmental data. Only when accurate neighborhood scale environmental data is affordable and accessible for architects, urban planners and policy makers, can design strategies to enhance urban health be effectively implemented. The results of an experimental air quality sensing campaign developed within Princeton University Campus is presented.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2020_511
id ecaade2020_511
authors Maierhofer, Mathias, Ulber, Marie, Mahall, Mona, Serbest, Asli and Menges, Achim
year 2020
title Designing (for) Change - Towards adaptivity-specific architectural design for situational open Environments
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 575-584
doi https://doi.org/10.52842/conf.ecaade.2020.2.575
summary The introduction of cybernetic principles to the architectural discourse some 50 years ago stimulated a new notion of buildings as dynamic and under-specified systems. Although their traditional conception as static and deterministic objects has remained predominant to this day, concepts for adaptive architecture capable of interacting with their surroundings and occupants have gained renewed attention in recent decades. However, investigations so far have largely concentrated on small-scale applications or individual adaptation strategies. The notion of situational open Environments, as argued in this paper, provides a framework through which adaptivity can be conceived and explored more holistically as well as on an inhabitable scale. Environments reject deterministic design and adaptation solutions and hence call for integrative and interactive design strategies that not only allow for the exploration of particularly adaptable (i.e. underspecified) architectural morphologies, but also for the communication and negotiation during their further development beyond deployment. In respect thereof, this paper discusses the potentials and implications of computational (design) strategies, meaning the agencies of buildings, designers, residents, and surroundings. The presented research originates from the author's involvement in an interdisciplinary research project centered around the development of an adaptive high-rise building that incorporates various adaptation strategies.
keywords Adaptive Architecture; Architectural Environment; Computational Design; Agent-based Modeling; Architecture Theory; Cybernetics
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia20_170p
id acadia20_170p
authors Pawlowska, Gosia
year 2020
title Viscous Catenary
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 170-175
summary Viscous Catenary is a free-form architectural glass structure that embeds material logic in a distributed system. Multi-curved panels are joined in a ‘catenary channel glass’ assembly, expressing the inherent behavior of the material at high temperatures. Float glass will typically achieve a level of viscosity at 1200°F (650°C), formed in a kiln by draping or “slumping. This hybrid fabrication process combines low-tech hardware and modern digital technologies. Glass panels were formed in a traditional kiln over a set of interchangeable waterjet-cut steel profiles or a repositionable tooling system. Parametric design in Grasshopper was essential to establish a discrete number of unique formwork elements and subdivide the overall geometry by panel size. In this case, each panel in the system was draped over four steel profiles. The formwork encourages a specific curvature in the glass, most precisely at the locations of folding. These moments of control allow the panels to align at their folds and join in an assembly by splice-lamination. Between the folds, the material remains free to shape itself, responding to its thickness, span, time, and temperature- into an undetermined “viscous catenary.” Selectively programming the geometry allows for a degree of material agency to remain in the system. This method differs from existing curved architectural glass, which would typically be pressed into a fully deterministic mold, leaving no opportunity for emergent morphologies. A pilot installation joined using transparent silicone adhesive achieved a height of 90cm with overlapping 30cm tall panels. Laser 3-d scanning between fabrication and assembly helped evaluate the fit between adjacent panels, identifying locations that required reinforcement. More research is needed to improve tolerances and overcome limitations in the adhesive before scaling up the fabrication system. Viscous Catenary succeeds in questioning the formal and structural potential of matter-driven curved architectural glass assemblies.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2020_222
id caadria2020_222
authors Sun, Chengyu and Hu, Wei
year 2020
title A Rapid Building Density Survey Method Based on Improved Unet
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 649-658
doi https://doi.org/10.52842/conf.caadria.2020.2.649
summary How to rapidly obtain building density information in a large range is a key problem for architecture and planning. This is because architectural design or urban planning is not isolated, and the environment of the building is influenced by the distribution of other buildings in a larger area. For areas where building density data are not readily available, the current methods to estimate building density are more or less inadequate. For example, the manual survey method is relatively slow and expensive, the traditional satellite image processing method is not very accurate or needs to purchase high-precision multispectral remote sensing image from satellite companies. Based on the deep neural network, this paper proposes a method to quickly extract large-scale building density information by using open satellite images platforms such as Baidu map, Google Earth, etc., and optimizes the application in the field of building and planning. Compared with the traditional method, it has the advantages of less time and money, higher precision, and can provide data support for architectural design and regional planning rapidly and conveniently.
keywords building density; rapidly and conveniently; neural network
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_257233 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002