CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id cdrf2019_36
id cdrf2019_36
authors Dan Luo, Joseph M. Gattas, and Poah Shiun Shawn Tan
year 2020
title Real-Time Defect Recognition and Optimized Decision Making for Structural Timber Jointing
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_4
summary Non-structural or out-of-grade timber framing material contains a large proportion of visual and natural defects. A common strategy to recover usable material from these timbers is the marking and removing of defects, with the generated intermediate lengths of clear wood then joined into a single piece of fulllength structural timber. This paper presents a novel workflow that uses machine learning based image recognition and a computational decision-making algorithm to enhance the automation and efficiency of current defect identification and rejoining processes. The proposed workflow allows the knowledge of worker to be translated into a classifier that automatically recognizes and removes areas of defects based on image capture. In addition, a real-time optimization algorithm in decision making is developed to assign a joining sequence of fragmented timber from a dynamic inventory, creating a single piece of targeted length with a significant reduction in material waste. In addition to an industrial application, this workflow also allows for future inventory-constrained customizable fabrication, for example in production of non-standard architectural components or adaptive reuse or defect-avoidance in out-of-grade timber construction.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_072
id caadria2020_072
authors Sheth, Urvi and Fida, Aysha
year 2020
title Funicular Structures using Topological Assemblies
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 75-84
doi https://doi.org/10.52842/conf.caadria.2020.1.075
summary Presented work is inspired by the research on funicular structures by Block Research Group and customising bricks by the first author. The research is focused on developing a mortarless construction system for funicular structures using topological assemblies on site. To make the proposed system financially viable in the India, it is suggested to limit the customisation of the topological modules. Topological assemblies interlock with its contact surfaces (Tessman, 2012). Further these force locked elements are kinematically constrained using an extrados post tensioning. As a result, the system is stable not only in complete compression, but it can also withstand lateral loads and vertical upliftment. Additionally, it is quick to assemble and dismantle the structure without foundation and by using minimum scaffolding. Therefore, the construction system can be used to build a range of temporary as well as permanent structures like temporary exhibition halls, emergency shelters, earthquake resistant structures, etc.
keywords Funicular structures; Mortarless masonry ; Topological assembly; Interlocking modules; Limited customisation
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2019_57
id cdrf2019_57
authors Caitlyn Parry and Sean Guy
year 2020
title Recycling Construction Waste Material with the Use of AR
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_6
summary This paper aims to present a methodology for reusing and recycling scrap timber from building sites using augmented reality and flexible digital models. The project we present describes a process that enables existing material to be reused and repurposed such that the designed model is updated by the digital inventory of digitised offcuts/waste elements.
series cdrf
email
last changed 2022/09/29 07:51

_id acadia20_372
id acadia20_372
authors Nelson, Cameron; Sabin, Jenny
year 2020
title Shape-Programmed Self-Assembly of Bead Structures
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 372-381.
doi https://doi.org/10.52842/conf.acadia.2020.1.372
summary This paper demonstrates the potential of a robust, low-cost approach to programmable matter using beads and string to achieve complex shapes with novel self-organizing and deformational properties. The method is inspired by the observation that beads forced together along a string will become constrained until they spontaneously rigidify. This behavior is easily observed using any household string and flat-faced beads and recalls the mechanism behind classic crafts such as push puppets. However, specific examples of architectural applications are lacking. We analyze how this phenomenon occurs through static force analyses, physical tests, and simulation, using a rigid body physics engine to validate digital prototypes. We develop a method of designing custom bead geometries able to be produced via generic 3D-printing technology, as well as a computational path-planning toolkit for designing ways of threading beads together. We demonstrate how these custom bead geometries and threading paths influence the acquired structure and its assembly. Finally, we propose a means of scaling up this phenomenon, suggesting potential applications in deployable architecture, mortarless assembly of nonfunicular masonry, and responsive architectural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia20_350
id acadia20_350
authors Atanasova, Lidia; Mitterberger, Daniela; Sandy, Timothy; Gramazio, Fabio; Kohler, Matthias; Dörfler, Kathrin
year 2020
title Prototype As Artefact
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 350-359.
doi https://doi.org/10.52842/conf.acadia.2020.1.350
summary In digital design-to-fabrication workflows in architecture, in which digitally controlled machines perform complex fabrication tasks, all design decisions are typically made before production. In such processes, the formal definition of the final shape is explicitly inscribed into the design model by means of corresponding step-by-step machine instructions. The increasing use of augmented reality (AR) technologies for digital fabrication workflows, in which people are instructed to carry out complex fabrication tasks via AR interfaces, creates an opportunity to question and adjust the level of detail and the nature of such explicit formal definitions. People’s cognitive abilities could be leveraged to integrate explicit machine intelligence with implicit human knowledge and creativity, and thus to open up digital fabrication to intuitive and spontaneous design decisions during the building process. To address this question, this paper introduces open-ended Prototype-as-Artefact fabrication workflows that examine the possibilities of designing and creative choices while building in a human-robot collaborative setting. It describes the collaborative assembly of a complex timber structure with alternating building actions by two people and a collaborative robot, interfacing via a mobile device with object tracking and AR visualization functions. The spatial timber assembly being constructed follows a predefined grammar but is not planned at the beginning of the process; it is instead designed during fabrication. Prototype-as-Artefact thus serves as a case study to probe the potential of both intuitive and rational aspects of building and to create new collaborative work processes between humans and machines.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_082
id caadria2020_082
authors Cheng, Celine and Pelosi, Antony
year 2020
title Connecting Timber Sheet Materials to Create a Self-Supporting Structure using Robotic Fabrication and Computational Tools
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 85-94
doi https://doi.org/10.52842/conf.caadria.2020.1.085
summary The research developed in this paper is the workflow to create a self-supporting structure from sheet materials using robotic fabrication and computational tools. This research focuses on timber sheet materials, as timber is a material that can be altered in a variety of ways. Japanese timber connections were a strong influence for this research, due to its prolonged lifespan and sustainable advantages. In the past, timber fabrication techniques have been limited due to design limitations. This research explored how current technology, specifically parametric software combined with robotic fabrication, can create timber connections to connect sheet materials at different angles. This method was utilised to repurpose the concept of sheet materials towards a complex structure, which adopted the idea of mass customisation over mass production. This can help reshape the future of architecture through the use of advancing technology and sustainable assembly techniques using timber to timber joints.
keywords Architecture; Robotic Fabrication; Timber; Parametric Design
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id artificial_intellicence2019_129
id artificial_intellicence2019_129
authors Hua Chai, Liming Zhang, and Philip F. Yuan
year 2020
title Advanced Timber Construction Platform Multi-Robot System for Timber Structure Design and Prefabrication
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_9
summary Robotic Timber Construction has been widely researched in the last decade with remarkable advancements. While existing robotic timber construction technologies were mostly developed for specific tasks, integrated platforms aiming for industrialization has become a new trend. Through the integration of timber machining center and advanced robotics, this research tries to develop an advanced timber construction platform with multi-robot system. The Timber Construction Platform is designed as a combination of three parts: multi-robot system, sensing system, and control system. While equipped with basic functions of machining centers that allows multi-scale multifunctional timber components’ prefabrication, the platform also served as an experimental facility for innovative robotic timber construction techniques, and a service platform that integrates timber structure design and construction through real-time information collection and feedback. Thereby, this platform has the potential to be directly integrated into the timber construction industry, and contributes to a mass-customized mode of timber structures design and construction.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id caadria2020_149
id caadria2020_149
authors Larsen, Niels Martin, Aagaard, Anders Kruse and Kieffer, Lynn Hyun
year 2020
title Digital Workflows for Natural Wood in Constructions
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 125-134
doi https://doi.org/10.52842/conf.caadria.2020.1.125
summary This research challenges current linear processing methods for standardised timber. The current industry does not leave room for irregular shapes of naturally grown wood. This paper describes a bespoke design and fabrication method that leverages these natural irregularities of the wood. The customised development of a digital tool allows the distribution of the non-standard material to form a structure and the associated robotic machining processes of the individual logs. This research seeks to motivate a more inclusive, diverse and sensitive culture of processing and building with wood while exploring the unique aesthetic qualities of non-standardised wood.
keywords robotic fabrication; digital workflows; wood processing
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2020_468
id ecaade2020_468
authors Mostafavi, Sina, Kastrati, Valmir, Badr, Hossam and Mazlan, Shazwan
year 2020
title Design Computation to Robotic Production Methods for Reciprocal Tessellation of Free-from Timber Structures - Design, production, and assembly of 100 years Bauhaus wood Pavilion
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 413-422
doi https://doi.org/10.52842/conf.ecaade.2020.2.413
summary In a reciprocal frame structure, at any given joint, there are only two members connecting to each other. Therefore, the joints in a standard reciprocal structure are topologically identical. Due to these topological similarities between the joints, the parametric modeling of a reciprocal frame structure applied to a geometrically regular surface, such as domes and symmetric shells, is practical, and it has been explored in several projects previously. In this context, this paper presents an integrated computational design to robotic production process of a free form wooden pavilion with a non-uniform tessellation pattern with differentiated cell sizes. The case study, on the one hand, elaborates on the challenges of solving reciprocal tessellation on complex geometries, and on the other hand, discusses the chosen and developed robotic production approach as a feedback loop that informs the design process.
keywords Reciprocal Structure; Wood Assembly; Design to Robotic Production; Reciprocal Tessellation; Free Form Timber Structure
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2020_363
id caadria2020_363
authors Pal, Abhipsa, Chan, Wi Leen, Tan, Ying Yi, Chia, Pei Zhi and Tracy, Kenneth Joseph
year 2020
title Knit Concrete Formwork
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
doi https://doi.org/10.52842/conf.caadria.2020.1.213
summary The manufacture of concrete funicular shells often relies on traditional formwork construction techniques to provide a sculptured cavity for the fluid material to occupy (Bechthold, 2004). While this enables a predictable geometric outcome, the extensive use of timber and/or steel to construct these formworks account for up to 60% of the total production cost of concrete and are discarded after the casting is complete (Lloret et al. 2014). Thus, we propose an alternative method to create prefabricated modular systems out of concrete casted in customised tubular knitted membranes. These perform as a network of struts that can be affixed onto 3D printed nodes of a singular design. Altogether, these components serve as a kit-of-parts that can be transported to site and assembled together to create shell geometries.
keywords Knitted Textile; Fabric Formwork; Concrete Casting
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2020_421
id caadria2020_421
authors Peters, Brady, Hoban, Nicholas and Kramer, Krystal
year 2020
title Sustainable Sonic Environments - The Robotic Fabrication of Mass Timber Acoustic Surfaces
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 453-462
doi https://doi.org/10.52842/conf.caadria.2020.2.453
summary This research proposes that mass timber panels can not only enable a new type of architecture that is sustainable, but that also sounds better. As mass timber construction often exposes the wood structure, and these panels are carefully constructed in factory settings, these panels have the potential to be built so that the acoustically absorptive, reflective, or sound scattering acoustic properties of surfaces can be integrated into the constructive logic and architectural aesthetic of the building. This paper specifically investigates the potentials of the sound scattering performance of cross laminated timber (CLT) panels. Through design, simulation, and prototyping various surface designs are investigated.
keywords Architectural Acoustics; Robotic Prototyping; Sound Scattering; Acoustic Simulation; Mass Timber
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2020_291
id sigradi2020_291
authors Quitral-Zapata, Francisco Javier; González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Martínez-Rocamora, Alejandro
year 2020
title Workflow for a Timber Joinery Robotics
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 291-296
summary We present a novel workflow for timber joinery robotics in low-rise building construction. A parametric 3D model that associates architectural design, structure geometry and robotic fabrication information was implemented using only CAD-based visual robot programming. Our case study is the design and manufacturing process of a two-story timber-framed dwelling. The main frames of the structure were assembled with mortise and tenon timber joints machined in glue-laminated timber using a 7-axis industrial robot in a wood company. This pioneering experience aims to apply timber framing robotics to social housing in emerging countries.
keywords Robots in architecture, Robotic timber construction, Timber framing, Timber Joinery Robotics, Visual robot programming
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia20_208
id acadia20_208
authors Zheng, Hao; Wang, Xinyu; Qi, Zehua; Sun, Shixuan; Akbarzadeh, Masoud
year 2020
title Generating and Optimizing a Funicular Arch Floor Structure
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 208-217.
doi https://doi.org/10.52842/conf.acadia.2020.2.208
summary In this paper, we propose a geometry-based generative design method to generate and optimize a floor structure with funicular building members. This method challenges the antiquated column system, which has been used for more than a century. By inputting the floor plan with the positions of columns, designers can generate a variety of funicular supporting structures, expanding the choice of floor structure designs beyond simply columns and beams and encouraging the creation of architectural spaces with more diverse design elements. We further apply machine learning techniques (artificial neural networks) to evaluate and optimize the structural performance and constructability of the funicular structure, thus finding the optimal solutions within the almost infinite solution space. To achieve this, a machine learning model is trained and used as a fast evaluator to help the evolutionary algorithm find the optimal designs. This interdisciplinary method combines computer science and structural design, providing flexible design choices for generating floor structures.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_114p
id acadia20_114p
authors Zivkovic, Sasa; Havener, Brian; Battaglia, Christopher
year 2020
title Log Knot
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 114-119.
summary Log Knot, developed by the Robotic Construction Laboratory (RCL) at Cornell University, is a robotically fabricated architectural installation that establishes a method for variable compound timber curvature creation utilizing both regular and irregular roundwood geometries. Moreover, the project develops methods for minimal formwork assembly and moment force optimization of customized mortise and tenon joints. Following the logic of a figure-8 knot, the project consists of an infinite loop of roundwood, curving three-dimensionally along its length. There are a variety of techniques to generate single curvature in wood structures – such as steam bending (Wright et al., 2013) or glue lamination (Issa and Kmeid, 2005) – but only a few techniques to generate complex curvature from raw material within a single wooden structural element exist. To construct complex curvature, the research team developed a simple method that can easily be replicated. First, the log is compartmentalized, establishing a series of discrete parts. Second, the parts are reconfigured into a complex curvature “whole” by carefully manipulating the assembly angles and joints between the logs. Timber components reconfigured in such a manner can either follow planar curvature profiles or spatial compound curvature profiles. Based on knowledge gained from the initial joinery tests, the research team developed a custom tri-fold mortise and tenon joint, which is self-supportive during assembly and able to resist bending in multiple directions. Using the tri-fold mortise and tenon joint, a number of full-scale prototypes were created to test the structural capacity of the overall assembly. Various structural optimization protocols are deployed in the Log Knot project. While the global knot form is derived from spatial considerations – albeit within the structurally sound framework of a closed-loop knot structure – the project is structurally optimized at a local level, closely calibrating structural cross-sections, joinery details, and joint rotation in relation to prevailing load conditions.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id sigradi2020_238
id sigradi2020_238
authors Álvarez, Marcelo; Bernal, Marcelo; Castro, Carlos
year 2020
title Modeling technique for vault-like structure generation through topological manipulation
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 238-245
summary This study is based on the development of a modeling technique for vault-like structure generation through topological manipulation. Currently, topology-driven form-finding has been implemented in tensile structures, but no further studies have been conducted for compression-only structures. The focus of this study is to approach the problem of highly determined vault shapes by their input topology. The technique operates at the topological level between vertices and edges to create an input 2D topology map. The particle-spring system uses such a map to simulate the resulting 3D mesh geometry. For testing purposes, we explore three generative approaches. The results show the effectiveness of the technique to manipulate the topological relationships that controls the generation of the funicular structures.
keywords Form-finding, Funicular, Particle-spring system, Design space, Topology
series SIGraDi
email
last changed 2021/07/16 11:48

_id cdrf2019_290
id cdrf2019_290
authors Mary Spyropoulos and Alisa Andrasek
year 2020
title Material Disruption
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_27
summary This paper examines the role of computational simulation of material processes with robotics fabrication, with the intent of examining its implications for architectural design and construction. Simulation techniques have been adopted in the automotive industry amongst others, advancing their design and manufacturing outputs. At present, architecture is yet to explore the full potential of this technology and their techniques. The need for simulation is evident in exploring the behaviours of materials and their relative properties. Currently, there is a distinct disconnect between the virtual model and its fabricated counterpart. Through research in simulation, we can begin to understand and clearly visualize the relationship between material behaviours and properties that can lead to a closer correlation between the digital design and its fabricated outcome. As the first phase of investigation, the material of clay is used due to its volatile qualities embedded within the material behaviour. The input geometry is constrained to rudimentary extruded forms in order to not obscure the behaviour of the material, but rather allow for it to drive the machine-making process.
series cdrf
email
last changed 2022/09/29 07:51

_id acadia20_248
id acadia20_248
authors Saha, Nirvik; Haymaker, John; Shelden, Dennis
year 2020
title Space Allocation Techniques (SAT)
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 248-257.
doi https://doi.org/10.52842/conf.acadia.2020.1.248
summary Architects and urban designers use space allocation to develop layouts constrained by project-specific attributes of spaces and relations between them. The space allocation problem (SAP) is a general class of computable problems that eluded automation due to combinatorial complexity and diversity of architectural forms. In this paper, we propose a solution to the space allocation problem using reinforcement learning (RL). In RL, an artificial agent interacts with a simulation of the design problem to learn the optimal spatial organization of a layout using a feedback mechanism based on project-specific constraints. Compared to supervised learning, where the scope of the design problem is restricted by the availability of prior samples, we developed a general approach using RL to address novel design problems, represented as SAP. We integrated the proposed solution to SAP with numerous geometry modules, collectively defined as the space allocation techniques (SAT). In this implementation, the optimization and generative modules are decoupled such that designers can connect the modules in various ways to generate layouts with desired geometric and topological attributes. The outcome of this research is a user-friendly, freely accessible Rhino Grasshopper (C#) plugin, namely, the Design Optimization Toolset or DOTs, a compilation of the proposed SAT. DOTs allows designers to interactively develop design alternatives that reconcile project-specific constraints with the geometric complexity of architectural forms. We describe how professional designers have applied DOTs in space planning, site parcellation, massing, and urban design problems that integrate with performance analysis to enable a holistic, semi-automated design exploration.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_328237 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002