CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 626

_id ecaade2020_314
id ecaade2020_314
authors Das, Avishek, Worre Foged, Isak and Jensen, Mads Brath
year 2020
title Designing with a Robot - Interactive methods for brick wall design using computer vision
doi https://doi.org/10.52842/conf.ecaade.2020.2.605
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 605-612
summary The deterministic and linear nature of robotic processes in architectural construction often allows no or very little adjustments during the fabrication process. If any need for modification arise the process is usually interrupted, changes are accommodated, and the process is resumed or restarted. The rigidity in this fabrication process leaves little room for creative intervention and human activities and robotic process are often considered as two segregated processes.The paper will present and discuss the methodological and design challenges of interactive robotic fabrication of brickwork with an industrial robotic arm, a webcam and bricks with varying color tones. Emphasis will be on the integration of external computer vision libraries within Rhino Grasshopper to augment the interactive robotic process. The paper will describe and demonstrate a framework comprising (1) robotic pick and place, material selection and evaluation using computer vision, (2) interactive robotic actuation and (3) the role of human input during a probabilistic fabrication-based design process.
keywords interactive robotic fabrication; human robot collaboration; computer vision; masonry; machine learning
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2020_180
id caadria2020_180
authors Jensen, Mads Brath and Das, Avishek
year 2020
title Technologies and Techniques for Collaborative Robotics in Architecture - - establishing a framework for human-robotic design exploration
doi https://doi.org/10.52842/conf.caadria.2020.2.293
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 293-302
summary This study investigates the technological and methodological challenges in establishing an indeterministic approach to robotic fabrication that allows for a collaborative and creative design/fabrication process. The research objective enquires into how robotic processes in architecture can move from deterministic fabrication processes towards explorative and indeterministic design processes. To address this research objective, the study specifically explores how an architect and a robot can engage in a process of co-creation and co-evolution, that is enabled by a collaborative robotic arm equipped with an electric gripper and a web camera. Through a case-based experiment, of designing and constructing an adjustable façade system consisting of parallel wood lamellas, designer and robotic system co-create by means of interactive processes. The study will present and discuss the technological implementations used to construct the interactive robotic-based design process, with emphasis on the integration of visual analysis features in Grasshopper and on the benefits of establishing a state machine for interactive and creative robotic control in architecture.
keywords Design cognition; Digital fabrication ; Construction; Human-computer interaction
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2020_062
id caadria2020_062
authors Lu, Ming and Yuan, Philip F.
year 2020
title A New Algorithm to Get Optimized Target Plane on 6-Axis Robot For Fabrication
doi https://doi.org/10.52842/conf.caadria.2020.2.393
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 393-402
summary In usual robotic fabrication by 6 axis industrial robot such as KUKA ,ABB and other brands ,the usual robot's 4th ,5th and 6th axis is exactly converge in one point .When this type robot (pieper) is doing movement commands ,setting the degree of 4th axis close to zero is an ideal condition for motion stability ,especially for putting device which connect to tool head on 4th axis arm part.In plastic melting or others print which not cares the rotation angle about the printing direction(the printing direction means the effector's output normal direction vector, KUKA is X axis,ABB is Z axis) ,the optimization of 4th axis technology not only makes printing stable but also makes better quality for printing.The paper introduces a new algorithm to get the analytics solution.The algorithm is clear explained by mathematics and geometry ways. At the end of paper, a grasshopper custom plugin is provided ,which contains this new algorithm ,with this plugin, people can get the optimized target path plane more easily.
keywords 3D printing; brick fabrication; robotic; optimization algorithm; grasshopper plugin
series CAADRIA
email
last changed 2022/06/07 07:59

_id artificial_intellicence2019_87
id artificial_intellicence2019_87
authors Ming Lu, Wei Ran Zhu, and Philip F. Yuan
year 2020
title Toward a Collaborative Robotic Platform: FUROBOT
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_6
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2021)
summary In usual robotic fabrication by 6-axis industrial robots such as KUKA, ABB, and other brands, the usual robot’s 4th, 5th, and 6th axis is exactly converged in one point. When this type robot (pieper) is doing movement commands, setting the degree of 4th axis close to zero is an ideal condition for motion stability, especially for putting device which connects to tool head on 4th axis arm part. In plastic melting or others print which not cares the rotation angle about the printing direction (the printing direction means the effector’s output normal direction vector, KUKA is X axis, ABB is Z axis), the optimization of 4th axis technology not only makes printing stable but also makes better quality for printing. The paper introduces a new algorithm to get the analytics solution. The algorithm is clearly explained by mathematics and geometry ways. At the end of the paper, a grasshopper custom plugin is provided, which contains this new algorithm, with this plugin, people can get the optimized target path plane more easily.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id sigradi2020_291
id sigradi2020_291
authors Quitral-Zapata, Francisco Javier; González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Martínez-Rocamora, Alejandro
year 2020
title Workflow for a Timber Joinery Robotics
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 291-296
summary We present a novel workflow for timber joinery robotics in low-rise building construction. A parametric 3D model that associates architectural design, structure geometry and robotic fabrication information was implemented using only CAD-based visual robot programming. Our case study is the design and manufacturing process of a two-story timber-framed dwelling. The main frames of the structure were assembled with mortise and tenon timber joints machined in glue-laminated timber using a 7-axis industrial robot in a wood company. This pioneering experience aims to apply timber framing robotics to social housing in emerging countries.
keywords Robots in architecture, Robotic timber construction, Timber framing, Timber Joinery Robotics, Visual robot programming
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_170p
id acadia20_170p
authors Pawlowska, Gosia
year 2020
title Viscous Catenary
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 170-175
summary Viscous Catenary is a free-form architectural glass structure that embeds material logic in a distributed system. Multi-curved panels are joined in a ‘catenary channel glass’ assembly, expressing the inherent behavior of the material at high temperatures. Float glass will typically achieve a level of viscosity at 1200°F (650°C), formed in a kiln by draping or “slumping. This hybrid fabrication process combines low-tech hardware and modern digital technologies. Glass panels were formed in a traditional kiln over a set of interchangeable waterjet-cut steel profiles or a repositionable tooling system. Parametric design in Grasshopper was essential to establish a discrete number of unique formwork elements and subdivide the overall geometry by panel size. In this case, each panel in the system was draped over four steel profiles. The formwork encourages a specific curvature in the glass, most precisely at the locations of folding. These moments of control allow the panels to align at their folds and join in an assembly by splice-lamination. Between the folds, the material remains free to shape itself, responding to its thickness, span, time, and temperature- into an undetermined “viscous catenary.” Selectively programming the geometry allows for a degree of material agency to remain in the system. This method differs from existing curved architectural glass, which would typically be pressed into a fully deterministic mold, leaving no opportunity for emergent morphologies. A pilot installation joined using transparent silicone adhesive achieved a height of 90cm with overlapping 30cm tall panels. Laser 3-d scanning between fabrication and assembly helped evaluate the fit between adjacent panels, identifying locations that required reinforcement. More research is needed to improve tolerances and overcome limitations in the adhesive before scaling up the fabrication system. Viscous Catenary succeeds in questioning the formal and structural potential of matter-driven curved architectural glass assemblies.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id acadia20_594
id acadia20_594
authors Farahbakhsh, Mehdi; Kalantar, Negar; Rybkowski, Zofia
year 2020
title Impact of Robotic 3D Printing Process Parameters on Bond Strength
doi https://doi.org/10.52842/conf.acadia.2020.1.594
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 594-603.
summary Additive manufacturing (AM), also known as 3D printing, offers advantages over traditional construction technologies, increasing material efficiency, fabrication precision, and speed. However, many AM projects in academia and industrial institutions do not comply with building codes. Consequently, they are not considered safe structures for public utilization and have languished as exhibition prototypes. While three discrete scales—micro, mezzo, and macro—are investigated for AM with paste in this paper, structural integrity has been tackled on the mezzo scale to investigate the impact of process parameters on the bond strength between layers in an AM process. Real-world material deposition in a robotic-assisted AM process is subject to environmental factors such as temperature, humidity, the load of upper layers, the pressure of the nozzle on printed layers, etc. Those factors add a secondary geometric characteristic to the printed objects that was missing in the initial digital model. This paper introduces a heuristic workflow for investigating the impacts of three selective process parameters on the bond strength between layers of paste in the robotic-assisted AM of large-scale structures. The workflow includes a method for adding the secondary geometrical characteristic to the initial 3D model by employing X-ray computerized tomography (CT) scanning, digital image processing, and 3D reconstruction. Ultimately, the proposed workflow offers a pattern library that can be used by an architect or artificial intelligence (AI) algorithms in automated AM processes to create robust architectural forms.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia20_226p
id acadia20_226p
authors Borhani, Alireza; Kalantar, Negar
year 2020
title Interlocking Shell
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 226-231
summary With a specific focus on robotic stereotomy, two full-scale vault structures were designed to explore the potential of self-standing building structures made from interlocking components; these structures were fabricated with a track-mounted industrial-scale robot (ABB 4600). To respond to the economic affordances of robotic subtractive cutting, all uniquely shaped structural modules came from one block of material (48"" x96"" x36""). Through the discretization of curvilinear tessellated vault surfaces into a limited number of uniquely shaped modules with embedded form-fitting connectors, the project exhibited the potential for programming a robot to cut ruled surfaces to produce freeform shells of any kind. Representing nearly zero-waste construction, the developed technology can potentially be used for self-supporting emergency shelters and field medical clinics, facilitating easy shipping and speedy assembly. Without using any scaffolding, a few people can erect and dismantle an entire mortar-free structure at the construction site. The disassembled structure occupies minimal space in storage, and the structure’s pieces can be transported to the site in stacks. Robot milling is a common technique for removing material to transform a block into a sculptural shape. Unlike milling techniques that produce significant waste, we used a hotwire that sliced through a Geofoam block to create almost no waste pieces. Since the front side of every module was concurrent with the backside of the next one, such a decision allowed to operate just one cut per front side of each module. In this case, by having three cuts, two neighboring modules were fabricated. The form of the structure and its modules emerged from the constraints of the fabrication technique, aiming to establish a feedback loop between geometry, material, simulation, and tool. By cross-referencing geometric data across Grasshopper, a customized tessellation script was made to breakdown a vault into its modular ruled surface constructs.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_412
id caadria2020_412
authors Capunaman, Ozguc Bertug
year 2020
title CAM as a Tool for Creative Expression - Informing Digital Fabrication through Human Interaction
doi https://doi.org/10.52842/conf.caadria.2020.1.243
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 243-252
summary Contemporary digital design and fabrication tools often present deterministic and pre-programmed workflows. This limits the potential for developing a deeper understanding of materials within the process. This paper presents an interactive and adaptive design-fabrication workflow where the user can actively take turns in the fabrication process. The proposed experimental setup utilizes paste extrusion additive manufacturing in tandem with real-time control of an industrial robotic arm. By incorporating a computer-vision based feedback loop, it captures momentary changes in the fabricated artifact introduced by the users to inform the digital representation. Using the updated digital representation, the proposed system can offer simple design hypotheses for the user to evaluate and adapt future toolpaths accordingly. This paper presents the development of the experimental setup and delineates critical concepts and their motivation.
keywords Computer-Aided Design (CAD) and Manufacturing (CAM); Human Computer Interaction; 3D Printing; Interactive Digital Fabrication; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac202018403
id ijac202018403
authors Dagmar Reinhardt, Matthias Hank Haeusler, Kerry London, Lian Loke, Yingbin Feng, Eduardo De Oliveira Barata, Charlotte Firth, Kate Dunn, Nariddh Khean, Alessandra Fabbri, Dylan Wozniak-O’Connor and Rin Masuda
year 2020
title CoBuilt 4.0: Investigating the potential of collaborative robotics for subject matter experts
source International Journal of Architectural Computing vol. 18 - no. 4, 353–370
summary Human-robot interactions can offer alternatives and new pathways for construction industries, industrial growth and skilled labour, particularly in a context of industry 4.0. This research investigates the potential of collaborative robots (CoBots) for the construction industry and subject matter experts; by surveying industry requirements and assessments of CoBot acceptance; by investing processes and sequences of work protocols for standard architecture robots; and by exploring motion capture and tracking systems for a collaborative framework between human and robot co-workers. The research investigates CoBots as a labour and collaborative resource for construction processes that require precision, adaptability and variability.Thus, this paper reports on a joint industry, government and academic research investigation in an Australian construction context. In section 1, we introduce background data to architecture robotics in the context of construction industries and reports on three sections. Section 2 reports on current industry applications and survey results from industry and trade feedback for the adoption of robots specifically to task complexity, perceived safety, and risk awareness. Section 3, as a result of research conducted in Section 2, introduces a pilot study for carpentry task sequences with capture of computable actions. Section 4 provides a discussion of results and preliminary findings. Section 5 concludes with an outlook on how the capture of computable actions provide the foundation to future research for capturing motion and machine learning.
keywords Industry 4.0, collaborative robotics, on-site robotic fabrication, industry research, machine learning
series journal
email
last changed 2021/06/03 23:29

_id cdrf2019_36
id cdrf2019_36
authors Dan Luo, Joseph M. Gattas, and Poah Shiun Shawn Tan
year 2020
title Real-Time Defect Recognition and Optimized Decision Making for Structural Timber Jointing
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_4
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary Non-structural or out-of-grade timber framing material contains a large proportion of visual and natural defects. A common strategy to recover usable material from these timbers is the marking and removing of defects, with the generated intermediate lengths of clear wood then joined into a single piece of fulllength structural timber. This paper presents a novel workflow that uses machine learning based image recognition and a computational decision-making algorithm to enhance the automation and efficiency of current defect identification and rejoining processes. The proposed workflow allows the knowledge of worker to be translated into a classifier that automatically recognizes and removes areas of defects based on image capture. In addition, a real-time optimization algorithm in decision making is developed to assign a joining sequence of fragmented timber from a dynamic inventory, creating a single piece of targeted length with a significant reduction in material waste. In addition to an industrial application, this workflow also allows for future inventory-constrained customizable fabrication, for example in production of non-standard architectural components or adaptive reuse or defect-avoidance in out-of-grade timber construction.
series cdrf
email
last changed 2022/09/29 07:51

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_164
id caadria2020_164
authors Lu, Yi-Heng, Wang, Shih-Yuan, Sheng, Yu-Ting, Lin, Che-Wei, Pang, Yu-Hsuan and Hung, Wei-Tse
year 2020
title Transient Materialization – Robotic Metal Curving
doi https://doi.org/10.52842/conf.caadria.2020.2.423
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 423-432
summary This paper introduces the notion of transient materialization to investigate a novel approach of robotic fabrication. Transient materialization explores a new logic of materialization that takes the advantage of differentiated material states to generate form at a particular moment through computation and fabrication technologies. Specifically, this design research explains a unique design and fabrication process, opening up a new method of materializing architectural form that emerges from the interweaving of data, the material capacity (plastic deformation), timing, and machine capacity. Hence, to examine this research direction, this paper conducts an experimental project, Robotic Metal Curving, through hands-on material experiments, as well as the development of algorithms, robot motion, and prototyping machines. This experiment utilizes an induction heating technique in cooperation with a six-axis industrial robotic arm and fabrication equipment used to shape each metal rod into a three-dimensional curve at a transient moment. In addition, the project focuses not only on developing a robotic metal curving system but also apply this technique in large scale by fabricating a wire-frame structure.
keywords Robotic Fabrication; Digital Fabrication; Metal Bending
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac202018405
id ijac202018405
authors Olga Mesa, Saurabh Mhatre and Dan Aukes
year 2020
title CREASE: Synchronous gait by minimizing actuation through folded geometry
source International Journal of Architectural Computing vol. 18 - no. 4, 385–403
summary The Age of the Fourth Industrial Revolution promises the integration and synergy of disciplines to arrive at meaningful and comprehensive solutions. As computation and fabrication methods become pervasive, they present platforms for communication. Value exists in diverse disciplines bringing their approach to a common conversation, proposing demands, and potentials in response to entrenched challenges. Robotics has expanded recently as computational analysis, and digital fabrication methods are more accurate and reliable. Advances in functional microelectromechanical components have resulted in the design of new robots presenting alternatives to traditional ambulatory robots. However, most examples are the result of intense computational analysis necessitating engineering expertise and specialized manufacturing. Accessible fabrication methods like laminate techniques propose alternatives to new robot morphologies. However, most examples remain overly actuated without harnessing the full potential of folds for locomotion. Our research explores the connection between origami structures and kinematics for the generation of an ambulatory robot presenting efficient, controlled, and graceful gait with minimal use of components. Our robot ‘Crease’ achieves complex gait by harnessing kinematic origami chains rather than relying on motors. Minimal actuation activates the folds to produce variations in walk and direction. Integrating a physical iterative process with computational analysis, several prototypes were generated at different scales, including untethered ones with sensing and steering that could map their environment. Furthering the dialogue between disciplines, this research contributes not only to the field of robotics but also architectural design, where efficiency, adjustability, and ease of fabrication are critical in designing kinetic elements.
keywords Digitals fabrication, robotics, origami, laminate construction, smart geometry, digital manufacturing and materials, smart materials
series journal
email
last changed 2021/06/03 23:29

_id sigradi2020_594
id sigradi2020_594
authors Poustinchi, Ebrahim; Hashemi, Mona; Krivanek, Cory
year 2020
title Physical Interface for Robotic Marionette Camera (RMC): Hardware Controlling Platform for Robotic Videography Motion Design
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 594-599
summary This project-based research is an investigation on controlling robotic videography/camera through an interactive physical interface. Here referred to as Robotic Marionette Camera (RMC), this research project is enabling designers and videographers to design precise robotic videography scenarios and camera-paths in the physical world with similar qualities to the digital design environments.Using the ideas of a “digital” camera in design software platforms, RMC looks at concepts such as aiming, zooming in and out, panning, orbiting, and other motions/operations borrowed from cinematography, such as tilting, rolling and trucking amongst others.As a physical/hardware interface, RMC enables real-time interaction with an industrial robot arm through a custom-made hardware controller. Using a tangible interface, RMC users can design, edit, and program the robotic videography paths interactively without a need for programming knowledge.
keywords Robotics, Design, Interface Design, Videography, Human-Robot Interaction
series SIGraDi
email
last changed 2021/07/16 11:52

_id sigradi2020_363
id sigradi2020_363
authors Ulloa Aguayo, Paula Ignacia; García-Alvarado, Rodrigo; Osses Coloma, Mauricio; Pérez Fargallo, Alexis
year 2020
title Robotic Adaptations for Building Works; assembly of concrete blocks “stay-in-place” with robots
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 363-370
summary The progress fostered by the fourth industrial revolution requires building methods according to productivity and sustainability, which also considers the human factor. Therefore, this work addresses safety and efficiency of construction tasks and transformation by robots. As a case study, assembly process of “stay-in-place” concrete blocks is studied, consisting of prefabricated insitu molding pieces with thermal insulation, and finishing included. The movements of the worker in the assembly are evaluated, to be supported by robot procedure and its implications in architectural design. By implementing this technology, human risks in the execution of a work are reduced, allowing greater constructive productivity.
keywords Robots in Architecture, Building Works, Assembly, Digital Fabrication
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_395
id ecaade2020_395
authors Xian, Ziju, Hoban, Nicholas and Peters, Brady
year 2020
title Spatial Timber Assembly - Robotically Fabricated Reciprocal Frame Wall
doi https://doi.org/10.52842/conf.ecaade.2020.2.403
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 403-412
summary Though highly robust and economical, traditional lamella and reciprocal structural systems cannot adapt to surfaces with complex double curvature; as the timber members are standardized with no variation. Recent research has explored the use of computation for design, structural optimization, and use of robotic systems for the automated fabrication of timber joints. The disconnection between fabrication and assembly makes the construction of non-uniform double-curved reciprocal frames challenging, due to the required precise placement of discrete members with compound angle butt joints. This project investigates the use of robotic fabrication to cut and assemble a timber reciprocal frame assembly. A computational model was created to generate the double-curved reciprocal frame geometry. Within this computational framework, joint analysis, fabrication, and assembly were monitored and adjusted to meet limiting factors. An industrial robot was implemented as a bridge between the computational model and the physical construction. This paper presents a number of novel computational and robotic fabrication techniques in designing, cutting, and positioning. These techniques were explored through the robotic fabrication and assembly of a demonstrator - a double-curved reciprocal frame wall.
keywords Robotic Fabrication; Reciprocal Frame; Prototyping
series eCAADe
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_638841 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002