CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
doi https://doi.org/10.52842/conf.acadia.2020.1.516
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_049
id ecaade2020_049
authors Kretzer, Manuel and Mostafavi, Sina
year 2020
title Robotic Fabrication with Bioplastic Materials - Digital design and robotic production of biodegradable objects
doi https://doi.org/10.52842/conf.ecaade.2020.1.603
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 603-612
summary Bioplastics are materials that are composed of renewable organic biomass sources and thus they are inherently biodegradable. On top of their ecological advantages to standard plastics they help to conserve fossil raw materials and the dependency on mineral oil. Recent advancements in digital design and robotic materialisation have introduced innovative methods for the realisation of complex geometries and direct experimentation through physical prototyping. Within this collaborative course between the Dessau Department of Design and the Dessau Institute of Architecture, we set out to explore the potentials of self-made bioplastic materials in combination with cutting-edge robotic fabrication in order to produce compostable products. Throughout the course the participants got acquainted with the fundamentals of parametric design to robotic production while performing systematic scientific experiments with bioplastics to develop the perfect material for robotic production. The paper presents a number of recipes on how to create bioplastics in a DIY manner. Moreover, the material research methodology, as well as robotic fabrication strategies behind each of the projects, are discussed in detail.
keywords Bioplastic; Robotic 3D Printing; Digital Materiality; Material Architecture; Biomaterial; Material Ecology
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac202018206
id ijac202018206
authors Mitterberger, Daniela and Tiziano Derme
year 2020
title Digital soil: Robotically 3D-printed granular bio-composites
source International Journal of Architectural Computing vol. 18 - no. 2, 194-211
summary Organic granular materials offer a valid alternative for non-biodegradable composites widely adopted in building construction and digital fabrication. Despite the need to find alternatives to fuel-based solutions, current material research in architecture mostly supports strategies that favour predictable, durable and homogeneous solutions. Materials such as soil, due to their physical properties and volatile nature, present new challenges and potentials to change the way we manufacture, built and integrate material systems and environmental factors into the design process. This article proposes a novel fabrication framework that combines high-resolution three-dimensional- printed biodegradable materials with a novel robotic-additive manufacturing process for soil structures. Furthermore, the research reflects on concepts such as affordance and tolerance within the field of digital fabrication, especially in regards to bio-materials and robotic fabrication. Soil as a building material has a long tradition. New developments in earth construction show how earthen buildings can create novel, adaptive and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough geometrical articulations. This research proposes to use a robotic binder-jetting process that creates novel organic bio-composites to overcome such limitations of common earth constructions. In addition, this article shows how biological polymers, such as polysaccharides-based hydrogels, can be used as sustainable, biodegradable binding agents for soil aggregates. This article is divided into four main sections: architecture and affordance; tolerance versus precision; water-based binders; and robotic fabrication parameters. Digital Soil envisions a shift in the design practice and digital fabrication that builds on methods for tolerance handling. In this context, material and geometrical properties such as material porosity, hydraulic conductivity and natural evaporation rate affect the architectural resolution, introducing a design process driven by matter. Digital Soil shows the potential of a fully reversible biodegradable manufacturing process for load-bearing architectural elements, opening up new fields of application for sustainable material systems that can enhance the ecological potential of architectural construction.
keywords Robotic fabrication, adaptive materials, water-based fabrication, affordance, organic matter, additive manufacturing
series journal
email
last changed 2020/11/02 13:34

_id ijac202018405
id ijac202018405
authors Olga Mesa, Saurabh Mhatre and Dan Aukes
year 2020
title CREASE: Synchronous gait by minimizing actuation through folded geometry
source International Journal of Architectural Computing vol. 18 - no. 4, 385–403
summary The Age of the Fourth Industrial Revolution promises the integration and synergy of disciplines to arrive at meaningful and comprehensive solutions. As computation and fabrication methods become pervasive, they present platforms for communication. Value exists in diverse disciplines bringing their approach to a common conversation, proposing demands, and potentials in response to entrenched challenges. Robotics has expanded recently as computational analysis, and digital fabrication methods are more accurate and reliable. Advances in functional microelectromechanical components have resulted in the design of new robots presenting alternatives to traditional ambulatory robots. However, most examples are the result of intense computational analysis necessitating engineering expertise and specialized manufacturing. Accessible fabrication methods like laminate techniques propose alternatives to new robot morphologies. However, most examples remain overly actuated without harnessing the full potential of folds for locomotion. Our research explores the connection between origami structures and kinematics for the generation of an ambulatory robot presenting efficient, controlled, and graceful gait with minimal use of components. Our robot ‘Crease’ achieves complex gait by harnessing kinematic origami chains rather than relying on motors. Minimal actuation activates the folds to produce variations in walk and direction. Integrating a physical iterative process with computational analysis, several prototypes were generated at different scales, including untethered ones with sensing and steering that could map their environment. Furthering the dialogue between disciplines, this research contributes not only to the field of robotics but also architectural design, where efficiency, adjustability, and ease of fabrication are critical in designing kinetic elements.
keywords Digitals fabrication, robotics, origami, laminate construction, smart geometry, digital manufacturing and materials, smart materials
series journal
email
last changed 2021/06/03 23:29

_id acadia20_556
id acadia20_556
authors Prado, Marshall
year 2020
title Computational Design of Fiber Composite Tower Structures
doi https://doi.org/10.52842/conf.acadia.2020.1.556
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 556-563.
summary This paper describes the computational design aspects of large-scale fiber composite tower structures that are fabricated using novel coreless filament winding processes. Current research on coreless filament winding has shown how high-performance composite materials can be used for many architectural scenarios; however, structural typologies for towers have never been tested. Additionally, biomimetic research on the lightweight lattice systems of cactus skeletons has demonstrated the potential for using interconnected multinodal component geometries to make efficient, tall structures. New integrated computational design and fabrication processes are required to utilize multi-nodal components in composite towers. These processes integrate biomimetic principles, structural performance, material organization, and fabrication logic. The goal of this research is to streamline the form-finding process, to more accurately simulate coreless wound geometries, and to develop adaptive fiber simulation processes for winding syntax development and robotic fiber winding. These techniques improved accuracy and control over existing methods of fabrication for coreless wound structures while simultaneously making the process more efficient. The research presented here will describe and showcase the key improvements used in the design and fabrication of a full-scale architectural demonstrator.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id artificial_intellicence2019_295
id artificial_intellicence2019_295
authors Xiang Wang, Kam-Ming Mark Tam, Alexandre Beaudouin-Mackay,Benjamin Hoyle, Molly Mason, Zhe Guo, Weizhe Gao, Ce Li, Weiran Zhu,Zain Karsan, Gene Ting-Chun Kao, Liming Zhang, Hua Chai, Philip F. Yuan, and Philippe Block
year 2020
title 3d-Printed Bending-Active Formwork for Shell Structures
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_18
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2026)
summary This paper presents a novel building technique for the formwork of thin shell structures with 3d-printed bending-active mesh sheets. To enhance the structural stiffness of the flexible plastic materials, bending-active form is applied to utilize the geometry stiffening effect through the large deformation of bending. As it is the main problem to determine the final geometry of the bent surface, design methods with consideration of the numerical simulation is researched and both simulations via dynamic relaxation and finite element method are presented. Several demonstrator pavilions and the building process are shown to test the feasibilities of the presented building techniques in the real shell project. It is expected that this method could be applied into more thin shell projects to realize an efficient building technology with less exhaust of materials.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id acadia20_546
id acadia20_546
authors Yan Ng, Tsz; Ahlquist, Sean; Filipov, Evgueni; Weisman, Tracey
year 2020
title Active-Casting
doi https://doi.org/10.52842/conf.acadia.2020.1.546
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 546-555.
summary Active-Casting explores the use of bespoke computer numerical controlled (CNC) manufactured knits to produce volumetric textile formwork for casting glass-fiber-reinforced concrete (GFRC). As a collaboration between experts in architecture, textile fabrication, and civil engineering, the research investigates multimaterial, functionally graded knit formwork as a fully seamless system to cast concrete. Working with controlled characteristics such as elasticity and stiffness of yarn type and knit structure, the soft textile is conceived as the vessel that defines the performative characteristics of volume, geometry, and surface detail. With only a minimal frame to suspend the volumetric cast, hydrostatic pressure “inflates” the fabric formwork, creating a dynamic form-finding process that eliminates the need for typical molding materials such as wood or foam. While active formfinding processes for CNC knit casting have been explored as an open-face, GFRC-sprayed system, the Active-Casting process produces a finished surface on all faces, embedded with expressions in form and surface detail from the knitted formwork. The precast units using this process reduce the amount of construction waste for formwork production, proposes a more automated fashion for manufacturing the formwork, and produces casts with complex geometries difficult to accomplish with traditional casting methods.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_443
id caadria2020_443
authors Abuzuraiq, Ahmed M. and Erhan, Halil
year 2020
title The Many Faces of Similarity - A Visual Analytics Approach for Design Space Simplification
doi https://doi.org/10.52842/conf.caadria.2020.1.485
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 485-494
summary Generative design methods may involve a complex design space with an overwhelming number of alternatives with their form and design performance data. Existing research addresses this complexity by introducing various techniques for simplification through clustering and dimensionality reduction. In this study, we further analyze the relevant literature on design space simplification and exploration to identify their potentials and gaps. We find that the potentials include: alleviating the choice overload problem, opening up new venues for interrelating design forms and data, creating visual overviews of the design space and introducing ways of creating form-driven queries. Building on that, we present the first prototype of a design analytics dashboard that combines coordinated and interactive visualizations of design forms and performance data along with the result of simplifying the design space through hierarchical clustering.
keywords Visual Analytics; Design Exploration; Dimensionality Reduction; Clustering; Similarity-based Exploration
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia20_456
id acadia20_456
authors Alali, Jiries; Negar Kalantar, Dr.; Borhani, Alireza
year 2020
title Casting on a Dump
doi https://doi.org/10.52842/conf.acadia.2020.1.456
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 456-463.
summary “Casting on a dump” focuses on finding accessible, low-tech fabrication methodologies that allow for the construction of parametrically designed nonstandard modular cast panels. Such an approach adopts a computational design framework using a single low-tech and low-energy fabrication device to create nonrepetitive volumetric panels cast in situ. The design input for these panels is derived from design preferences and environmental control data. The technique expands upon easy to fabricate and cast methods, targeting less-developed logistical settings worldwide, and thus responding to imminent needs related to climate, available resources, and the economy.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_228
id acadia20_228
authors Alawadhi, Mohammad; Yan, Wei
year 2020
title BIM Hyperreality
doi https://doi.org/10.52842/conf.acadia.2020.1.228
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 228-236.
summary Deep learning is expected to offer new opportunities and a new paradigm for the field of architecture. One such opportunity is teaching neural networks to visually understand architectural elements from the built environment. However, the availability of large training datasets is one of the biggest limitations of neural networks. Also, the vast majority of training data for visual recognition tasks is annotated by humans. In order to resolve this bottleneck, we present a concept of a hybrid system—using both building information modeling (BIM) and hyperrealistic (photorealistic) rendering—to synthesize datasets for training a neural network for building object recognition in photos. For generating our training dataset, BIMrAI, we used an existing BIM model and a corresponding photorealistically rendered model of the same building. We created methods for using renderings to train a deep learning model, trained a generative adversarial network (GAN) model using these methods, and tested the output model on real-world photos. For the specific case study presented in this paper, our results show that a neural network trained with synthetic data (i.e., photorealistic renderings and BIM-based semantic labels) can be used to identify building objects from photos without using photos in the training data. Future work can enhance the presented methods using available BIM models and renderings for more generalized mapping and description of photographed built environments.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_66
id acadia20_66
authors Aviv, Dorit; Wang, Zherui; Meggers, Forrest; Ida, Aletheia
year 2020
title Surface Generation of Radiatively-Cooled Building Skin for Desert Climate
doi https://doi.org/10.52842/conf.acadia.2020.1.066
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 66-73.
summary A radiatively cooled translucent building skin is developed for desert climates, constructed out of pockets of high heat-capacity liquids. The liquids are contained by a wavelength-selective membrane enclosure, which is transmissive in the infrared range of electromagnetic radiation but reflective in the shortwave range, and therefore prevents overheating from solar radiation and at the same time allows for passive cooling through exposure of its thermal mass to the desert sky. To assess the relationship between the form and performance of this envelope design, we develop a feedback loop between computational simulations, analytical models, and physical tests. We conduct a series of simulations and bench-scale experiments to determine the thermal behavior of the proposed skin and its cooling potential. Several materials are considered for their thermal storage capacity. Hydrogel cast into membrane enclosures is tested in real climate conditions. Slurry phase change materials (PCM) are also considered for their additional heat storage capacity. Challenges of membrane welding patterns and nonuniform expansion of the membrane due to the weight of the enclosed liquid are examined in both digital simulations and physical experiments. A workflow is proposed between the radiation analysis based on climate data, the formfinding simulations of the elastic membrane under the liquid weight, and the thermal storage capacity of the overall skin.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_115
id ecaade2020_115
authors Azambuja Varela, Pedro and Sousa, José Pedro
year 2020
title Liquid Stereotomy - the Tamandua Vault
doi https://doi.org/10.52842/conf.ecaade.2020.2.361
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 361-370
summary A renewed interest in stereotomy, narrowly entwined with digital technologies, has allowed for the recovery and proposal of new techniques and expressions in this building approach. A new classification scheme for stereotomy research allows for the framing of various aspects related to this discipline, including a newly developed fabrication system specially tailored for the wedge-shaped voussoirs. This fabrication system is based in a reusable mould which may assume an infinite number of geometries, avoiding the wasteful discarding of material found in subtractive strategies. The usage of a mould also allows for more sustainable materials to be employed, catering to current challenges. The strategies subject for demonstration in this project rely on various bottom-up approaches, which involve particle physic simulations such as a hanging model to compute an optimal stereo-funicular shape, or spring mechanisms to find optimal coplanar solutions. The proposed mechanisms work in a parametric algorithmically environment, able to handle dozens of uniquely different voussoirs at the same time. Together with the automatic translation to fabrication data, the proposed shape complexity would hardly be built with classic tools. The Tamandua Vault project has the purpose of exemplifying the possibilities of an updated stereotomy, while its design demonstrates current strategies that may be employed in the resolution of complex geometrical problems and bespoke fabrication of construction components for stereotomy.
keywords stereotomy; digital design; digital fabrication; compression; sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_142
id ascaad2021_142
authors Bakir, Ramy; Sara Alsaadani, Sherif Abdelmohsen
year 2021
title Student Experiences of Online Design Education Post COVID-19: A Mixed Methods Study
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 142-155
summary This paper presents findings of a survey conducted to assess students’ experiences within the online instruction stage of their architectural education during the lockdown period caused by the COVID-19 pandemic between March and June 2020. The study was conducted in two departments of architecture in both Cairo branches of the Arab Academy for Science, Technology & Maritime Transport (AASTMT), Egypt, with special focus on courses involving a CAAD component. The objective of this exploratory study was to understand students’ learning experiences within the online period, and to investigate challenges facing architectural education. A mixed methods study was used, where a questionnaire-based survey was developed to gather qualitative and quantitative data based on the opinions of a sample of students from both departments. Findings focus on the qualitative component to describe students’ experiences, with quantitative data used for triangulation purposes. Results underline students’ positive learning experiences and challenges faced. Insights regarding digital tool preferences were also revealed. Findings are not only significant in understanding an important event that caused remote architectural education in Egypt but may also serve as an important stepping-stone towards the future of design education in light of newly-introduced disruptive online learning technologies made necessary in response to lockdowns worldwide
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2020_227
id ecaade2020_227
authors Bielski, Jessica, Langenhan, Christoph, Weyand, Babara, Neuber, Markus, Eisenstadt, Viktor and Althoff, Klaus-Dieter
year 2020
title Topological Queries and Analysis of School Buildings Based on Building Information Modeling (BIM) Using Parametric Design Tools and Visual Programming to Develop New Building Typologies
doi https://doi.org/10.52842/conf.ecaade.2020.2.279
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 279-288
summary School buildings are currently one of the largest portions of planning and building projects in Germany. In order to reflect the continuous developments in school building construction with constantly changing spatial requirements, an approach to analyse, derive and combine patterns of schools is proposed to adapt school typologies accordingly. Therefore, the topology is analysed, concerning interconnection methods, such as adjacency, accessibility, depth, and flow. The geometric analysis of e.g. room sizes or spatial proportions is enhanced by including grouping of rooms, estimated room clusters, or room shapes. Furthermore, text-matching is used to determine e.g. room program fulfilment, or assigning functional room descriptions to predefined room types, revealing huge differences of terms throughout time and architects. First results of the analyses show a relevant correlation between spatial proportion and room types.
keywords school building typologies; building information modeling (BIM); artificial intelligence (AI); topology; spatial analysis; digital semantic model
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2024_222
id ecaade2024_222
authors Bindreiter, Stefan; Sisman, Yosun; Forster, Julia
year 2024
title Visualise Energy Saving Potentials in Settlement Development: By linking transport and energy simulation models for municipal planning
doi https://doi.org/10.52842/conf.ecaade.2024.2.079
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 79–88
summary To achieve Sustainable Development Goals, in addition to the switch to sustainable energy sources and energy-efficient buildings, transport offers a major lever for reducing energy consumption and greenhouse gases. The increasing demand for emission-free mobility (e.g. through electromobility) but also heat pumps has a direct impact on the electricity consumption of buildings and settlements. It is still difficult to simulate the effects and interactions of different measures as sector coupling concepts require comprehensible tools for ex ante evaluation of planning measures at the community level and the linking of domain-specific models (energy, transport). Using the municipality of Bruck an der Leitha (Austria) as an example, a digital twin based on an open data model (Bednar et al., 2020) is created for the development of methods, which can be used to simulate measures to improve the settlement structure within the municipality. Forecast models for mobility (Schmaus, 2019; Ritz, 2019) and the building stock are developed or applied and linked via the open data model to be able to run through development scenarios and variants. The forecasting and visualisation options created in the project form the basis for the ex-ante evaluation of measures and policies on the way to a Positive-Energy-District. By identifying and collecting missing data, data gaps are filled for the simulation of precise models in the specific study area. A digital, interactive 3D model is created to examine the forecast results and the different scenarios.
keywords visualisation, decision support, sector coupling, holistic spatial energy models for municipal planning, (energy) saving potentials in settlement development
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2020_209
id caadria2020_209
authors Bissoonauth, Chitraj, Fischer, Thomas and Herr, Christiane M.
year 2020
title An Ethnographic Enquiry into Digital Design Tool Making
doi https://doi.org/10.52842/conf.caadria.2020.2.213
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
summary This paper presents an ethnographic pilot study into the design and application of digital design tools in a leading Shanghai-based architecture and engineering firm. From a participant observer's point of view, we employ qualitative research methods to enquire the conditions and experiences entailed in day-to-day collaborative activities in conjunction with the custom-development of digital design tools in advanced practice. The described initial ethnographic enquiry lasted for six weeks. While previous studies tended to favour post-rationalised and outcome-focused reports into toolmaking for design, we observe through participant observation that daily collaboration in practice is multi-faceted and overwhelmingly more complex. This paper further portrays and reflects on the concomitant opportunities and challenges of participant observation as a research method that can bridge academia and practice. We argue that, in order to appreciate and to inform digital design toolmaking practices, it is essential to recognise the richness of practice, in and of itself.
keywords digital design toolmaking; custom-developed tools; collaborative processes; ethnography; participant observation
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac202018302
id ijac202018302
authors Brath Jensen, Mads; Isak Worre Foged and Hans Jørgen Andersen
year 2020
title A framework for interactive human–robot design exploration
source International Journal of Architectural Computing vol. 18 - no. 3, 235-253
summary This study seeks to identify key aspects for increased integration of interactive robotics within the creative design process. Through its character as foundational research, the study aims to contribute to the advancement of new explorative design methods to support architects in their exploration of fabrication and assembly of an integrated performance-driven architecture. The article describes and investigates a proposed design framework for supporting an interactive human–robot design process. The proposed framework is examined through a 3-week architectural studio, with university master students exploring the design of a brick construction with the support of an interactive robotic platform. Evaluation of the proposed framework was done by triangulation of the authors’ qualitative user observations, quantitative logging of the students’ individual design processes, and through questionnaires completed after finishing the studies. The result suggests that interactive human–robot fabrication is a relevant mode of design with positive effect on the process of creative design exploration.
keywords Design methods, robotic design processes, interactive robotics, computational design, design exploration, creativity
series other
type normal paper
email
last changed 2020/11/02 13:39

_id ecaade2020_047
id ecaade2020_047
authors Brown, Lachlan, Yip, Michael, Gardner, Nicole, Haeusler, M. Hank, Khean, Nariddh, Zavoleas, Yannis and Ramos, Cristina
year 2020
title Drawing Recognition - Integrating Machine Learning Systems into Architectural Design Workflows
doi https://doi.org/10.52842/conf.ecaade.2020.2.289
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 289-298
summary Machine Learning (ML) has valuable applications that are yet to be proliferated in the AEC industry. Yet, ML offers arguably significant new ways to produce and assist design. However, ML tools are too often out of the reach of designers, severely limiting opportunities to improve the methods by which designers design. To address this and to optimise the practices of designers, the research aims to create a ML tool that can be integrated into architectural design workflows. Thus, this research investigates how ML can be used to universally move BIM data across various design platforms through the development of a convolutional neural network (CNN) for the recognition and labelling of rooms within floor plan images of multi-residential apartments. The effects of this computation and thinking shift will have meaningful impacts on future practices enveloping all major aspects of our built environment from designing, to construction to management.
keywords machine learning; convolutional neural networks; labelling and classification; design recognition
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_347
id caadria2020_347
authors Budig, Michael, Heckmann, Oliver, Ng Qi Boon, Amanda, Hudert, Markus, Lork, Clement and Cheah, Lynette
year 2020
title Data-driven Embodied Carbon Evaluation of Early Building Design Iterations
doi https://doi.org/10.52842/conf.caadria.2020.2.303
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 303-312
summary In the early design phases, Life Cycle Assessment can assist project stakeholders in making informed decisions on choosing structural systems and materials with an awareness of environmental sustainability through their embodied carbon content; yet embodied carbon is difficult to quantify without detailed design information in the early design stages. In response, this paper proposes a novel data-driven tool, prior to the definition of floor plan layouts to perform embodied carbon evaluation of existing building designs based on a Bayesian Neural Network (BNN) regression. The BNN is built from data drawn from existing floor plans of residential buildings, and predicts material volume and embodied carbon from generic design parameters typical in the early design stage. Users will be able to interact with the tool in Grasshopper or as an online resource, input generic design parameters, and obtain comparative visualizations based on the choice of a construction system and its environmental sustainability in a 'shoebox' interface - a simplified three-dimensional representation of a building's primary spatial units generated with the tool.
keywords Regression; Bayesian Neural Network; High-Rise Residential Buildings
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_656264 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002