CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id caadria2020_146
id caadria2020_146
authors Lertsithichai, Surapong
year 2020
title Fantastic Facades and How to Build Them
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 355-364
doi https://doi.org/10.52842/conf.caadria.2020.1.355
summary As part of an ongoing investigation in augmented architecture, the exploration of an architectural facade as a crucial element of architecture is a challenging design experiment. We believe that new architectural facades when seamlessly integrated with augmented architecture, enhanced with multiple functionalities, interactivity and performative qualities can extend a building's use beyond its typical function and limited lifespan. Augmented facades or "Fantastic Facades," can be seen as a separate entity from the internal spaces inside the building but at the same time, can also be seen as an integral part of the building as a whole that connects users, spaces, functions and interactivity between inside and outside. An option design studio for 4th year architecture students was offered to conduct this investigation for a duration of one semester. During the process of form generations, students experimented with various 2D and 3D techniques including biomimicry and generative designs, biomechanics or animal movement patterns, leaf stomata patterns, porous bubble patterns, and origami fold patterns. Eventually, five facade designs were carried on towards the final step of incorporating performative interactions and contextual programs to the facade requirements of an existing building or structure in Bangkok.
keywords Facade Design; Augmented Architecture; Form Generation; Surface System; Performative Interactions
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2020_128
id ecaade2020_128
authors Ramsgaard Thomsen, Mette, Tamke, Martin, Sparre-Petersen, Maria, Fabritius Buchwald, Emil and Hnídková, Simona
year 2020
title Silica - A circular material paradigm by 3D printing recycled glass
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 613-622
doi https://doi.org/10.52842/conf.ecaade.2020.2.613
summary Silica examines the making of 3D printed tiles from recycled container glass. This paper describes an interdisciplinary exploration into how robot-controlled extrusion can offer new material practices by which to fabricate glass elements of an architectural scale. We pursue working with recycled container glass powder - a waste product derived from the reprocessing of recycled container glass - to contribute to circular development within an interdisciplinary artistic development context in the meeting between architecture and glass design. The project has two aims. On the one hand, it builds an in-depth understanding of the parameters of fabrication and devising means by which to control these through digital design methods and their interfacing with robotic fabrication processes. On the other hand, it critically questions the architectural, aesthetic and performative properties of these material practices and their embedded methods.
keywords Robotic fabrication; Digital design systems; Circular economy; 3D Glass printing; New material practices
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac202018205
id ijac202018205
authors Ahlquist, Sean
year 2020
title Negotiating human engagement and the fixity of computational design: Toward a performative design space for the differently-abled bodymind
source International Journal of Architectural Computing vol. 18 - no. 2, 174-193
summary Computational design affords agency: the ability to orchestrate the material, spatial, and technical architectural system. In this specific case, it occurs through enhanced, authored means to facilitate making and performance—typically driven by concerns of structural optimization, material use, and responsivity to environmental factors—of an atmospheric rather than social nature. At issue is the positioning of this particular manner of agency solely with the architect auteur. This abruptly halts—at the moment in which fabrication commences—the ability to amend, redefine, or newly introduce fundamentally transformational constituents and their interrelationships and, most importantly, to explore the possibility for extraordinary outcomes. When the architecture becomes a functional, social, and cultural entity, in the hands of the idealized abled-bodied user, agency—especially for one of an otherly body or mind—is long gone. Even an empathetic auteur may not be able to access the motivations of the differently-abled body and neuro- divergent mind, effectively locking the constraints of the design process, which creates an exclusionary system to those beyond the purview of said auteur. It can therefore be deduced that the mechanisms or authors of a conventional computational design process cannot eradicate the exclusionary reality of an architectural system. Agency is critical, yet a more expansive terminology for agent and agency is needed. The burden to conceive of capacities that will always be highly temporal, social, unpredictable, and purposefully unknown must be shifted far from the scope of the traditional directors of the architectural system. Agency, and who it is conferred upon, must function in a manner that dissolves the distinctions between the design, the action of designing, the author of design, and those subjected to it.
keywords Adaptive environments, neurodiversity, inclusion, systems thinking, computational design, disability theory, material systems, design agency
series journal
email
last changed 2020/11/02 13:34

_id acadia20_142p
id acadia20_142p
authors Kilian, Axel
year 2020
title The Flexing Room
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 142-147
summary Robotics has been largely confined to the object category with fewer examples at the scale of buildings. Robotic buildings present unique challenges in communicating intent to the enclosed user. Precedent work in architectural robotics explored the performative dimension, the playful and interactive qualities, and the cognitive challenges of AI systems interacting with people in architecture. The Flexing Room robotic skeleton was installed at MIT at its full designed height for the first time and tested for two weeks in the summer of 2019. The approximately 13-foot-tall structure is comprised of 36 pneumatic actuators and an active bend fiberglass structure. The full height allowed for a wide range of postures the structure could take. Acoustic monitoring through Piezo pickup mics was added that allowed for basic rhythmic responses of the structure to people tapping or otherwise triggering the vibration sensors. Data streams were collected synchronously from Kinect skeleton tracking, piezo pickup mics, camera streams, and posture data. The emphasis in this test period was first to establish reliable hardware operations at full scale and second to record correlated data streams of the sensors installed in the structure together with the actuation triggers and the human poses of the inhabitant. The full-scale installation of hardware was successful and proved the feasibility of the structural and actuation approach previously tested on a one-level setup. The range of postures was increased and more transparent for the occupant. The perception of the structure as space was also improved as the system reached regular ceiling height and formed a clearer architectural scale enclosure. The ambition of communicating through architectural postures has not been achieved yet, but promising directions emerged from the test and data collection
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ecaade2020_106
id ecaade2020_106
authors Mesa, Olga, Mhatre, Saurabh and Bechthold, Martin
year 2020
title Woven Compliant Composites
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 79-88
doi https://doi.org/10.52842/conf.ecaade.2020.1.079
summary Compliant composites are a new approach to composite systems that leverage the semi-rigid properties of composite woven fabrics to create kinetic compliant mechanisms. Simple fabrication and economic actuation principles are proposed to transform planar fabrics into three-dimensional configurations without using expensive molds, instead, relying on the millimeter-scale mechanical interactions of woven composite fabrics. The relation between fabric type, weave, matrix, laminations, and localized reinforcement was studied to achieve repeatable, durable, and functional components that displayed instant transformations. Woven compliant mechanisms were patterned to create adjustable surfaces actuated uniaxially and biaxially producing different degrees of porosity. The kinetic response is generated without the use of complicated mechanisms by relying on material properties and smart geometries. Our system expands work on kinetic surfaces with the advantage of the ease of actuation and fabrication. These surfaces can be used in architectural applications such as facades, shading mechanisms, and interior partitions where performative qualities are desirable.
keywords Compliant composites; Responsive systems; Material Intelligence; Smart geometries
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2020_894
id sigradi2020_894
authors Mesa, Olga
year 2020
title Choreographed Matter
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 894-902
summary This research proposes an animation technique using external stimuli to activate kinematic transformations in material. Inherent material properties were enhanced to obtain specific behaviors. Carefully designed but easily fabricated two-dimensional paper constructions animate into three-dimensional configurations through water absorption in three different conditions: Surface, Datum, and Depth. Principles of origami, fiber orientation, and wax patterns are used to control movement in response to choreographic considerations. Digital workflows and analysis coupled with physical prototyping were used to produce patterns and informed a formal and performative taxonomy. Choreographed Matter contributes to expanding the expressive potential of material-based responsive systems and animation.
keywords Choreographed matter, Responsive materials, Animation techniques, Animated Origami, Smart materials
series SIGraDi
email
last changed 2021/07/16 11:53

_id acadia20_218
id acadia20_218
authors Rossi, Gabriella; Nicholas, Paul
year 2020
title Encoded Images
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 218-227.
doi https://doi.org/10.52842/conf.acadia.2020.1.218
summary In this paper, we explore conditional generative adversarial networks (cGANs) as a new way of bridging the gap between design and analysis in contemporary architectural practice. By substituting analytical finite element analysis (FEA) modeling with cGAN predictions during the iterative design phase, we develop novel workflows that support iterative computational design and digital fabrication processes in new ways. This paper reports two case studies of increasing complexity that utilize cGANs for structural analysis. Central to both experiments is the representation of information within the data set the cGAN is trained on. We contribute a prototypical representational technique to encode multiple layers of geometric and performative description into false color images, which we then use to train a Pix2Pix neural network architecture on entirely digital generated data sets as a proxy for the performance of physically fabricated elements. The paper describes the representational workflow and reports the process and results of training and their integration into the design experiments. Last, we identify potentials and limits of this approach within the design processes.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_223
id sigradi2020_223
authors Silva, Diego Jami Menezes da; Martino, Jarryer Andrade de
year 2020
title Space planning from environmental parameter
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 223-228
summary The environmental parameter as a constraint in the initial phase of the design process becomes essential for the promotion of the building's environment comfort. This research explores the principles of space planning and the genetic algorithm considering an environment parameter to obtain optimized-solutions automatically in the initial phase of the architectural design process. For this, a generative system was developing using space planning and a genetic algorithm from an environmental parameter to obtain better solutions automatically. Several studies happened to understand the functioning of the mechanism. The research discusses the results and failures that may have influenced the generative system.
keywords Genetic algorithm, Generative system, Space planning, Performative design, Environmental comfort
series SIGraDi
email
last changed 2021/07/16 11:48

_id caadria2020_359
id caadria2020_359
authors Vivanco, Tomas, Valencia, Antonia and Yuan, Philip F.
year 2020
title 4D printing: Computational Mechanical Design of Bi-dimensional 3D Printed Patterns over Tensioned Textiles for Low-energy Three-dimensional Volumes.
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 193-202
doi https://doi.org/10.52842/conf.caadria.2020.1.193
summary From the distribution of the embedded energy in materials, can be operated in order to design and produce optimized material systems with minimum use of external energy to achieve its maximum three-dimensional capacity within their mechanical constraints. This research studies the process of 3D printing bidimensional layers over a tensioned fabric to generate three-dimensional shapes. After the tension of the fabric is released, the printed pattern generates tension and compression over the textile, which conduce and distribute the internal forces generating a controlled deformation with a final form. Digital simulation of finite anticlastic shapes and parametric design under mechanical constraints of the material used to predict and compare both physical and digital forms. These allow us to evaluate and optimize the printed pattern in order to decrease the amount of used energy and material to produce a performative shape.
keywords 4d printing; material computation; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2020_443
id caadria2020_443
authors Abuzuraiq, Ahmed M. and Erhan, Halil
year 2020
title The Many Faces of Similarity - A Visual Analytics Approach for Design Space Simplification
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 485-494
doi https://doi.org/10.52842/conf.caadria.2020.1.485
summary Generative design methods may involve a complex design space with an overwhelming number of alternatives with their form and design performance data. Existing research addresses this complexity by introducing various techniques for simplification through clustering and dimensionality reduction. In this study, we further analyze the relevant literature on design space simplification and exploration to identify their potentials and gaps. We find that the potentials include: alleviating the choice overload problem, opening up new venues for interrelating design forms and data, creating visual overviews of the design space and introducing ways of creating form-driven queries. Building on that, we present the first prototype of a design analytics dashboard that combines coordinated and interactive visualizations of design forms and performance data along with the result of simplifying the design space through hierarchical clustering.
keywords Visual Analytics; Design Exploration; Dimensionality Reduction; Clustering; Similarity-based Exploration
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_423
id caadria2020_423
authors Erhan, Halil, Zarei, Maryam, Abuzuraiq, Ahmed M., Haas, Alyssa, Alsalman, Osama and Woodbury, Robert
year 2020
title FlowUI: Combining Directly-Interactive Design Modeling with Design Analytics
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 475-484
doi https://doi.org/10.52842/conf.caadria.2020.1.475
summary In a systems building experiment, we explored how directly manipulating non-parametric geometries can be used together with a real-time parametric performance analytics for informed design decision-making in the early phases of design. This combination gives rise to a design process where considerations that would traditionally take place in the late phases of design can become part of the early phases. The paper presents FlowUI, a prototype tool for performance-driven design that is developed in a collaboration with our industry partner as part of our design analytics research program. The tool works with and responds to changes in the design modeling environment, processes the design data and presents the results in design (data) analytics interfaces. We discuss the system's design intent and its overall architecture, followed by a set of suggestions on the comparative analysis of design solutions and design reports generation as integral parts of design exploration tasks.
keywords Non-Parametric Modeling; Performance-Driven Design; Design Analytics; Information Visualization
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_060
id caadria2020_060
authors Lesna, Joanna Maria and Nicholas, Paul
year 2020
title De gradus - Programming heterogeneous performance of functionally graded bio-polymers for degradable agricultural shading structures.
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 383-392
doi https://doi.org/10.52842/conf.caadria.2020.2.383
summary This paper presents an holistic approach to the digital design and fabrication of fungi- and algae-based biopolymers, based on studies and simulations of material properties and post-fabrication behavior. The research is motivated by the problem of plastic waste, the need to create more sustainable manufacturing processes, and the opportunity for material composition and organization to be informed by performance, leading to homogenous, complex and integral architectural elements for temporary architecture of agricultural shading systems. The paper details design and specification methods for functionally graded biopolymer panels, as well as fabrication methods through the making of prototypical built elements. The research details parallel trajectories of: material exploration made out of renewable and biodegradable resources available and abundant in every habitat on the earth; advancement in tools and methods for in-situ robotic additive manufacturing of viscous bio-polymers; development of the strategy for functional grading of the material properties to optimize site specificity and material distribution, and to reduce building material waste. It presents comparative material characterizations, an integrated simulation-based approach to support the process of programming localized performance, and architectural application tested via full-scale prototypes.
keywords functionally graded material; bio-polymer; programmable matter; robotic farbication; multiscale modeling
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2020_511
id ecaade2020_511
authors Maierhofer, Mathias, Ulber, Marie, Mahall, Mona, Serbest, Asli and Menges, Achim
year 2020
title Designing (for) Change - Towards adaptivity-specific architectural design for situational open Environments
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 575-584
doi https://doi.org/10.52842/conf.ecaade.2020.2.575
summary The introduction of cybernetic principles to the architectural discourse some 50 years ago stimulated a new notion of buildings as dynamic and under-specified systems. Although their traditional conception as static and deterministic objects has remained predominant to this day, concepts for adaptive architecture capable of interacting with their surroundings and occupants have gained renewed attention in recent decades. However, investigations so far have largely concentrated on small-scale applications or individual adaptation strategies. The notion of situational open Environments, as argued in this paper, provides a framework through which adaptivity can be conceived and explored more holistically as well as on an inhabitable scale. Environments reject deterministic design and adaptation solutions and hence call for integrative and interactive design strategies that not only allow for the exploration of particularly adaptable (i.e. underspecified) architectural morphologies, but also for the communication and negotiation during their further development beyond deployment. In respect thereof, this paper discusses the potentials and implications of computational (design) strategies, meaning the agencies of buildings, designers, residents, and surroundings. The presented research originates from the author's involvement in an interdisciplinary research project centered around the development of an adaptive high-rise building that incorporates various adaptation strategies.
keywords Adaptive Architecture; Architectural Environment; Computational Design; Agent-based Modeling; Architecture Theory; Cybernetics
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2020_411
id ecaade2020_411
authors Muehlbauer, Manuel, Song, Andy and Burry, Jane
year 2020
title Smart Structures - A Generative Design Framework for Aesthetic Guidance in Structural Node Design - Application of Typogenetic Design for Custom-Optimisation of Structural Nodes
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-632
doi https://doi.org/10.52842/conf.ecaade.2020.1.623
summary Virtual prototypes enable performance simulation for building components. The presented research extended the application of generative design using virtual prototypes for interactive optimisation of structural nodes. User-interactivity contributed to the geometric definition of design spaces rather than the final geometric outcome, enabling another stage of generative design for the micro-structure of the structural node. In this stage, the micro-structure inside the design space was generated using fixed topology. In contrast to common optimisation strategies, which converge towards a single optimal outcome, the presented design exploration process allowed the regular review of design solutions. User-based selection guided the evolutionary process of design space exploration applying Online Classification. Another guidance mechanism called Shape Comparison introduced an intelligent control system using an inital image input as design reference. In this way, aesthetic guidance enabled the combined evaluation of quantitative and qualitative criteria in the custom-optimisation of structural nodes. Interactive node design extended the potential for shape variation of custom-optimized structural nodes by addressing the geometric definition of design spaces for multi-scalar structural optimisation.
keywords generative design; evolutionary computation; interactive machine learning; typogenetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_248
id acadia20_248
authors Saha, Nirvik; Haymaker, John; Shelden, Dennis
year 2020
title Space Allocation Techniques (SAT)
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 248-257.
doi https://doi.org/10.52842/conf.acadia.2020.1.248
summary Architects and urban designers use space allocation to develop layouts constrained by project-specific attributes of spaces and relations between them. The space allocation problem (SAP) is a general class of computable problems that eluded automation due to combinatorial complexity and diversity of architectural forms. In this paper, we propose a solution to the space allocation problem using reinforcement learning (RL). In RL, an artificial agent interacts with a simulation of the design problem to learn the optimal spatial organization of a layout using a feedback mechanism based on project-specific constraints. Compared to supervised learning, where the scope of the design problem is restricted by the availability of prior samples, we developed a general approach using RL to address novel design problems, represented as SAP. We integrated the proposed solution to SAP with numerous geometry modules, collectively defined as the space allocation techniques (SAT). In this implementation, the optimization and generative modules are decoupled such that designers can connect the modules in various ways to generate layouts with desired geometric and topological attributes. The outcome of this research is a user-friendly, freely accessible Rhino Grasshopper (C#) plugin, namely, the Design Optimization Toolset or DOTs, a compilation of the proposed SAT. DOTs allows designers to interactively develop design alternatives that reconcile project-specific constraints with the geometric complexity of architectural forms. We describe how professional designers have applied DOTs in space planning, site parcellation, massing, and urban design problems that integrate with performance analysis to enable a holistic, semi-automated design exploration.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_241
id caadria2020_241
authors Shireen, Naghmi, Erhan, Halil, Woodbury, Robert and Antle, Alissa N.
year 2020
title Spatial Metaphors for Multi-Dimensional Design Gallery Interfaces
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 265-274
doi https://doi.org/10.52842/conf.caadria.2020.1.265
summary With increased computing capabilities and large screen displays, the opportunity to support multiple designs in a single interface has recently become practical. Generating a large number of design alternatives is still a challenge but equally is to manage, review, understand and make-sense out of this multi-dimensional design space. Especially, when we consider the human cognitive limitations and the overly crowded informational displays. This research focuses on developing spatial metaphors based on the previous design literature and the findings from a study conducted to understand how to manage large design spaces with thousands of alternatives. We compare the existing design gallery systems used in practice with the spatial metaphors proposed in this paper. The goal is to develop a spatial structuring toolkit for interface designers of such tools.
keywords Design space exploration; spatial metaphors; multi-dimensional design space; gallery interfaces
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2020_284
id ecaade2020_284
authors Tan, Rachel, Patt, Trevor, Koh, Seow Jin and Chen, Edmund
year 2020
title Exploration & Validation - Making sense of generated data in large option sets
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 653-662
doi https://doi.org/10.52842/conf.ecaade.2020.1.653
summary The project is a real-world case study where we advised our client in the selection of a viable and well-performing design from a set of computationally generated options. This process was undertaken while validating the algorithmic generative process and user-defined evaluation criteria through scrutinizing the other alternative options to ensure ample variability was considered. Optimisation algorithms were not ideal as low performing options were not visible to validate variability. We established variability by extracting the different groups of options, proving to the client that various operational behaviours were present and accounted for. In order to sieve through the noise and derive meaningful results, we employed methods to filter through thousands of options, including: k-means clustering, archetypal labelling and analysis, pareto front analysis and visualisation overlays. We present a sense-making and decision-making process that utilizes principles of genetic algorithms and analysis of multi-dimensional user-derived evaluation scores. To enable the client's confidence in the computational model, we proved the effectiveness of the generative model through communicating and visualizing the impact of different criterias. This ensured that operational needs were considered. The visualization methods we employed, including pareto front extraction and analysis eventually helped our clients to arrive at a decision.
keywords generative design; validation; multi-objective optimisation; k-means; pareto front; decision-making
series eCAADe
email
last changed 2022/06/07 07:56

_id cdrf2019_169
id cdrf2019_169
authors Yubo Liu, Yihua Luo, Qiaoming Deng, and Xuanxing Zhou
year 2020
title Exploration of Campus Layout Based on Generative Adversarial Network Discussing the Significance of Small Amount Sample Learning for Architecture
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_16
summary This paper aims to explore the idea and method of using deep learning with a small amount sample to realize campus layout generation. From the perspective of the architect, we construct two small amount sample campus layout data sets through artificial screening with the preference of the specific architects. These data sets are used to train the ability of Pix2Pix model to automatically generate the campus layout under the condition of the given campus boundary and surrounding roads. Through the analysis of the experimental results, this paper finds that under the premise of effective screening of the collected samples, even using a small amount sample data set for deep learning can achieve a good result.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_369
id caadria2020_369
authors Heckmann, Oliver, Budig, Michael, Xuereb Conti, Zack, Cheng, Ray Chern Xi and Lo Tian Tian, Sky
year 2020
title User-driven Parcellation of High-rise Units for Future Urban Habitation - Participatory Computational Design Tools for Future Urban Habitation
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 751-760
doi https://doi.org/10.52842/conf.caadria.2020.1.751
summary Most residential high-rise apartments currently built to satisfy growing demands for housing, are predetermined and thus, are unable to respond to the increasingly diversifying forms of co-habitation. This research pursues alternative flexible approaches by building on Habraken's 'Open Building' paradigm, where permanent, polyvalent 'Support System' layouts are strategically designed to accommodate highly adaptable, user-driven 'Infill systems'. In this context, we adopt the participatory decision-making approach, by means of a computational framework that facilitates user-driven parcellations of entire buildings into apartments segments. The means is an algorithm that allocates numerous user-preference regarding size and position simultaneously - by searching for parcel permutations through a graph-syntax representation of floor plans. The research forms part of a larger project that aims to evaluate the resilience of mass housing for future uncertain demands.
keywords participatory; generative; mass housing; open building
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2020_157
id sigradi2020_157
authors Lanzara, Emanuela; Capone, Mara
year 2020
title Tangential surfaces to optimize digital manufacturing of complex shapes
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 157-165
summary The knowledge of geometric-mathematical rules allows to solve several problems about complex systems design and manufacturing. Geometric genesis of surfaces and their properties represent the main basis to solve both constructive and measurement problems. A developable surface can be manufactured starting from a flat strip, using a flexible and non- deformable material. Geometry studies properties that don't change and, therefore, the shape of the strip to obtain a certain configuration after a series of rigid movements. Our goal is to test different approches (Additive Manufacturing vs Subtractive Manufacturing) to manufacture a lamp using a tangential developable surface.
keywords Generative design, tangential surfaces, digital fabrication, developable surfaces, Additive Manufacturing, Subtractive Manufacturing
series SIGraDi
email
last changed 2021/07/16 11:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_588573 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002