CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 378

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
doi https://doi.org/10.52842/conf.acadia.2020.1.516
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_049
id ecaade2020_049
authors Kretzer, Manuel and Mostafavi, Sina
year 2020
title Robotic Fabrication with Bioplastic Materials - Digital design and robotic production of biodegradable objects
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 603-612
doi https://doi.org/10.52842/conf.ecaade.2020.1.603
summary Bioplastics are materials that are composed of renewable organic biomass sources and thus they are inherently biodegradable. On top of their ecological advantages to standard plastics they help to conserve fossil raw materials and the dependency on mineral oil. Recent advancements in digital design and robotic materialisation have introduced innovative methods for the realisation of complex geometries and direct experimentation through physical prototyping. Within this collaborative course between the Dessau Department of Design and the Dessau Institute of Architecture, we set out to explore the potentials of self-made bioplastic materials in combination with cutting-edge robotic fabrication in order to produce compostable products. Throughout the course the participants got acquainted with the fundamentals of parametric design to robotic production while performing systematic scientific experiments with bioplastics to develop the perfect material for robotic production. The paper presents a number of recipes on how to create bioplastics in a DIY manner. Moreover, the material research methodology, as well as robotic fabrication strategies behind each of the projects, are discussed in detail.
keywords Bioplastic; Robotic 3D Printing; Digital Materiality; Material Architecture; Biomaterial; Material Ecology
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia20_446
id acadia20_446
authors Norell, Daniel; Rodhe, Einar; Hedlund, Karin
year 2020
title Completions
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 446-455.
doi https://doi.org/10.52842/conf.acadia.2020.1.446
summary Reuse of construction and demolition waste tends to be exceptional rather than systemic, despite the fact that such waste exists in excess. One of the challenges in handling used elements and materials is integrating them into a digital workflow through means of survey and representation. Techniques such as 3D scanning and robotic fabrication have been used to target irregular geometries of such extant material. Scanning can be applied to digitally define a unique rather than standard stock of materials or, as in the field of preservation, to transfer specific forms and qualities onto a new stock. This paper melds these two approaches through Completions, a project that promotes reuse by integrating salvaged elements and materials into new assemblies. Drawing from the ancient practice of reuse known as spolia, the work develops from the identification and documentation of a varied set of used entities that become points of departure for subsequent design and production of new entities. This involves multiple steps, from locating and selecting used elements to scanning and fabrication. Three assemblies based on salvaged objects are produced: a window frame, a door panel, and a mantelpiece. Different means of documentation are outlined in relation to specific qualities of these objects, from photogrammetry to image and mesh-based tracing. Authentic qualities belonging to these elements, such as wear and patina, are coupled with more ambiguous forms and materialities only attainable through digital survey and fabrication. Finally, Completions speculates on how more automated workflows might make it feasible to develop extensive virtual catalogs of used objects that designers could interact with remotely.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202018404
id ijac202018404
authors Paul Nicholas, Gabriella Rossi, Ella Williams, Michael Bennett and Tim Schork
year 2020
title Integrating real-time multi-resolution scanning and machine learning for Conformal Robotic 3D Printing in Architecture
source International Journal of Architectural Computing vol. 18 - no. 4, 371–384
summary Robotic 3D printing applications are rapidly growing in architecture, where they enable the introduction of new materials and bespoke geometries. However, current approaches remain limited to printing on top of a flat build bed. This limits robotic 3D printing’s impact as a sustainable technology: opportunities to customize or enhance existing elements, or to utilize complex material behaviour are missed. This paper addresses the potentials of conformal 3D printing and presents a novel and robust workflow for printing onto unknown and arbitrarily shaped 3D substrates. The workflow combines dual-resolution Robotic Scanning, Neural Network prediction and printing of PETG plastic. This integrated approach offers the advantage of responding directly to unknown geometries through automated performance design customization. This paper firstly contextualizes the work within the current state of the art of conformal printing. We then describe our methodology and the design experiment we have used to test it. We lastly describe the key findings, potentials and limitations of the work, as well as the next steps in this research.
keywords Conformal printing, robotic fabrication, 3D scanning, neural networks, industry 4.0
series journal
email
last changed 2021/06/03 23:29

_id acadia20_214p
id acadia20_214p
authors Rael, Ronald; San Fratello, Virginia; Curth, Alexander; Arja, Logman
year 2020
title Casa Covida
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 214-219
summary Casa Covida advances large scale earthen additive manufacturing by establishing new methods for the creation of interconnected, partially enclosed dome structures using a lightweight SCARA robotic arm and custom toolpathing software in combination with traditional earthen construction techniques. In the time of Covid-19, digital fabrication and construction are made difficult by a diminished supply chain and the safety concerns associated with a large team. In this project, we use local material, dug from the site itself, and two-three people working outdoors in a socially distanced manner. Three rooms are printed on-site in 500mm intervals by shifting the 3D printer between stations connected by a low-cost 4th-axis constructed from plywood. This system allows virtually simultaneous construction between domes, continuously printing without waiting for drying time on one structure so that a continued cycle of printing can proceed through the three stations 2-4 times a day, thereby minimizing machine downtime. The machine control software used in this project has been developed from the framework of Potterware, a tool built by our team to allow non-technical users to design and 3D print functional ceramics through an interactive web interface.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2020_128
id ecaade2020_128
authors Ramsgaard Thomsen, Mette, Tamke, Martin, Sparre-Petersen, Maria, Fabritius Buchwald, Emil and Hnídková, Simona
year 2020
title Silica - A circular material paradigm by 3D printing recycled glass
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 613-622
doi https://doi.org/10.52842/conf.ecaade.2020.2.613
summary Silica examines the making of 3D printed tiles from recycled container glass. This paper describes an interdisciplinary exploration into how robot-controlled extrusion can offer new material practices by which to fabricate glass elements of an architectural scale. We pursue working with recycled container glass powder - a waste product derived from the reprocessing of recycled container glass - to contribute to circular development within an interdisciplinary artistic development context in the meeting between architecture and glass design. The project has two aims. On the one hand, it builds an in-depth understanding of the parameters of fabrication and devising means by which to control these through digital design methods and their interfacing with robotic fabrication processes. On the other hand, it critically questions the architectural, aesthetic and performative properties of these material practices and their embedded methods.
keywords Robotic fabrication; Digital design systems; Circular economy; 3D Glass printing; New material practices
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia20_48
id acadia20_48
authors Schofield, Alex
year 2020
title Coral Carbonate
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 48-57.
doi https://doi.org/10.52842/conf.acadia.2020.1.048
summary This work-in-progress paper describes a body of research that utilizes the invention and application of a novel method to 3D-print calcium carbonate (CaCO3). The resultant 3D-printed objects can be computationally optimized and used as a scaffold for the growth of various aquatic life that exists at the interface of soft edges and the built, specifically (but not limited to) coral polyps. Rather than utilizing materials designed for anthropocentric terrestrial environments, we can harness materials and forms native to aquatic ecosystems in combination with advanced computation and fabrication techniques to help foster applied research in service to healthier ecosystems and cohabitation. This paper introduces the novel application of a 3D-printed calcium carbonate, mimicking a similar material composition to that of coral, and describes the additive manufactured medium with regard to 3D powder-printing methodologies. Hypothesis and proposal of morphogenesis in surface and volume are identified as key factors for interface with aquatic organisms. Current and future applications are additionally exhibited through a combination of material composition, surface, and form as targeted intervention and artificial restoration for aquatic ecosystems. While our planet requires anthropocentric mitigation strategies for reduction of greenhouse gases that contribute to aquatic life’s greatest threats, we must simultaneously develop strategies for adaptation that immediately respond to the current realities of a changing climate.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_484
id ecaade2020_484
authors Aguilar, Pavel, Borunda, Luis and Pardal, Cristina
year 2020
title Additive Manufacturing of Variable-Density Ceramics, Photocatalytic and Filtering Slats
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 97-106
doi https://doi.org/10.52842/conf.ecaade.2020.1.097
summary Additive Manufacturing (AM) offers the potential development of novel architectural applications of ceramic building components that can be engineered at the level of material to the extent of designing its performance and properties by density variations. This research presents a computational method and fabrication technique emulating complex material behavior via AM of intricate geometries and presents components with photocatalytic and climatic properties. It proposes an innovative application of AM of ceramic components in architecture to explore potential bioclimatic and antipollution performative use. Lattices are defined and manufactured with density variation gradients by tracing rectilinear clay deposition toolpaths that induce porosity intended for fluid filtering and to maximize sun exposure. The design method for photocatalytic, particle filtration and evaporative cooling local characterization introduced by complex patterning elements in architectural envelope slat components processed with radiation analysis influenced design are validated by simulation and experimental testing on specimens manufactured by paste extrusion.
keywords Ceramic 3D Printing; Paste Extrusion; Photocatalytic Filter; Performative Design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_160
id caadria2020_160
authors Bruce, Caitlin, Sweet, Kevin and Ok, Jeongbin
year 2020
title Closing the Loop - Recycling Waste Plastic
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 135-144
doi https://doi.org/10.52842/conf.caadria.2020.1.135
summary Worldwide we produce billions of tonnes of waste per year, including a million tonnes of plastic waste. Currently, there are methods for recycling plastic, but these methods can be expensive and time-consuming, resulting in most of the plastic being thrown into the landfill. Because plastic does not fully degrade, it ends up in the ocean and other waterways, poisoning the water with toxins. The purpose of this research is to provide a solution to reducing plastic waste by creating an alternative method of recycling that utilises new technologies such as additive manufacturing, to create a building material that fits into the concept of the circular economy. The findings of this research explored the recycling of plastic by collecting plastic waste such as PLA (Polylactic Acid) from old 3D printed models and other sources. The plastic was recycled into filament for additive manufacturing (AM) and used to print a building component, establishing a foundational proof of concept for the use of recycled plastic as a potential building material.
keywords Additive Manufacturing; 3D Printing; Recycling Plastic ; Recycled Filament ; Waste Plastic
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_412
id caadria2020_412
authors Capunaman, Ozguc Bertug
year 2020
title CAM as a Tool for Creative Expression - Informing Digital Fabrication through Human Interaction
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 243-252
doi https://doi.org/10.52842/conf.caadria.2020.1.243
summary Contemporary digital design and fabrication tools often present deterministic and pre-programmed workflows. This limits the potential for developing a deeper understanding of materials within the process. This paper presents an interactive and adaptive design-fabrication workflow where the user can actively take turns in the fabrication process. The proposed experimental setup utilizes paste extrusion additive manufacturing in tandem with real-time control of an industrial robotic arm. By incorporating a computer-vision based feedback loop, it captures momentary changes in the fabricated artifact introduced by the users to inform the digital representation. Using the updated digital representation, the proposed system can offer simple design hypotheses for the user to evaluate and adapt future toolpaths accordingly. This paper presents the development of the experimental setup and delineates critical concepts and their motivation.
keywords Computer-Aided Design (CAD) and Manufacturing (CAM); Human Computer Interaction; 3D Printing; Interactive Digital Fabrication; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_299
id ecaade2020_299
authors Colmo, Claudia and Ayres, Phil
year 2020
title 3d Printed Bio-hybrid Structures - Investigating the architectural potentials of mycoremediation
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 573-582
doi https://doi.org/10.52842/conf.ecaade.2020.1.573
summary In this paper, we present a speculative design concept for a mycelium-based living bio-hybrid architectural system. The system combines inoculated lignocellulosic substrates with soil-based 3d printed structures that function as growth scaffolds, material boundaries and spatial organisers. The primary objective of the system is to exploit mycelium as a living remediator of contaminated sites, in the form of architectural proposition. The feasibility of this concept is investigated in two ways: 1) material composition development and process control parameters for soil-based 3d printing, 2) the synthesis of printed prototypes to determine geometric and environmental parameters for promoting colonisation of mycelium and supporting its role as both structural binder and 'Mycorestoration' agent. This work is contextualised with reference to the state-of-the-art in order to identify the research gap and articulate the contribution of a mycelium-based remediating architecture. The merits and limits of the experimental results are reflected upon and trajectories of further investigation outlined.
keywords mycelium; mycorestoration; soil contamination; 3d printing; bio-hybrid architecture; design based experimentation
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia20_594
id acadia20_594
authors Farahbakhsh, Mehdi; Kalantar, Negar; Rybkowski, Zofia
year 2020
title Impact of Robotic 3D Printing Process Parameters on Bond Strength
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 594-603.
doi https://doi.org/10.52842/conf.acadia.2020.1.594
summary Additive manufacturing (AM), also known as 3D printing, offers advantages over traditional construction technologies, increasing material efficiency, fabrication precision, and speed. However, many AM projects in academia and industrial institutions do not comply with building codes. Consequently, they are not considered safe structures for public utilization and have languished as exhibition prototypes. While three discrete scales—micro, mezzo, and macro—are investigated for AM with paste in this paper, structural integrity has been tackled on the mezzo scale to investigate the impact of process parameters on the bond strength between layers in an AM process. Real-world material deposition in a robotic-assisted AM process is subject to environmental factors such as temperature, humidity, the load of upper layers, the pressure of the nozzle on printed layers, etc. Those factors add a secondary geometric characteristic to the printed objects that was missing in the initial digital model. This paper introduces a heuristic workflow for investigating the impacts of three selective process parameters on the bond strength between layers of paste in the robotic-assisted AM of large-scale structures. The workflow includes a method for adding the secondary geometrical characteristic to the initial 3D model by employing X-ray computerized tomography (CT) scanning, digital image processing, and 3D reconstruction. Ultimately, the proposed workflow offers a pattern library that can be used by an architect or artificial intelligence (AI) algorithms in automated AM processes to create robust architectural forms.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_456
id ecaade2020_456
authors Farinea, Chiara, Awad, Lana, Dubor, Alex and El Atab, Mohamad
year 2020
title Integrating biophotovoltaic and cyber-physical technologies into a 3D printed wall
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 463-472
doi https://doi.org/10.52842/conf.ecaade.2020.2.463
summary The research presented in this paper investigates the development of "3D printed ceramic green wall", a technological Nature Based Solution (NBS) aimed at regenerating urban areas by improving spatial quality and sustainability through clean and autonomous energy production. Building upon previous research, the challenge of this system is to adapt additive manufacturing processes of ceramic 3D printing with biophotovoltaic systems while simultaneously developing digital and cyber-physical frameworks to generate site and user responsive design and autonomous solutions that optimize system performance and energy generation. The paper explores the complex design negotiations between these drivers, focusing particularly on their performance optimization, and finally highlights the system potential as exemplified through a successful implementation of a 1:1 site responsive wall prototype.
keywords Nature based solutions; biophotovoltaic systems; additive manufacturing; responsive design; cyber-physical networks; augmented reality
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2020_312
id sigradi2020_312
authors Farrokhsiar, Paniz; Gursoy, Benay
year 2020
title Robotic Sketching: A Study on Robotic Clay 3D Printing
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 312-319
summary Digital fabrication tools are typically employed to materialize a fixed design. Design limits the choice of material; Natural material behavior may consider as flaws in the fabrication. What if these tools and material behaviors being used as sketching tools to generate new design ideas? In this paper, we present a workflow in which digital fabrication tools, specifically robotic arms, are used as sketching tools. It is called robotic sketching; The goal is to sketch with effects of fabrication settings on emerging behaviors of materials in first steps of design. We exemplify this workflow with a case on robotic clay 3D printing.
keywords Digital fabrication, Sketching, Additive manufacturing, 3D printing with clay, Robotic
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2020_315
id caadria2020_315
authors Feng, Shiyu, Du, Mengzeshan, Wang, Weiyi, Lu, Heng, Park, Daekwon and Ji, Guohua
year 2020
title 3D Printed Monolithic Joints - A Mechanically Bistable Joint
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 173-182
doi https://doi.org/10.52842/conf.caadria.2020.1.173
summary This paper describes the design and fabrication process of an adaptive joint using 3D printed mono-material bistable mechanisms. The proposed joint deforms when external forces are applied, achieving two stable states. An x-shaped microstructure (simul-SLE) is designed for the connection portion of the bistable structure inside the joint. 3D-Printing experiments is conducted to explore the possibility of various forms of simul-SLE, which realize bistable by a single material. The experiment primarily solved two problems, namely the selection of materials and how to make the rigid 3D printed material acquires properties of flexibility and softness. Finally, practical applications are shown to prove the future of this joint.
keywords 3D printing; adaptive joint; mechanically-bistable joint
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 18HOMELOGIN (you are user _anon_624885 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002