CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 652

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
doi https://doi.org/10.52842/conf.acadia.2020.1.516
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_74
id acadia20_74
authors Bucklin, Oliver; Born, Larissa; Körner, Axel; Suzuki, Seiichi; Vasey, Lauren; T. Gresser, Götz; Knippers, Jan; Menges,
year 2020
title Embedded Sensing and Control
doi https://doi.org/10.52842/conf.acadia.2020.1.074
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 74-83.
summary This paper investigates an interactive and adaptive control system for kinetic architectural applications with a distributed sensing and actuation network to control modular fiber-reinforced composite components. The aim of the project was to control the actuation of a foldable lightweight structure to generate programmatic changes. A server parses input commands and geometric feedback from embedded sensors and online data to drive physical actuation and generate a digital twin for real-time monitoring. Physical components are origami-like folding plates of glass and carbon-fiber-reinforced plastic, developed in parallel research. Accelerometer data is analyzed to determine component geometry. A component controller drives actuators to maintain or move towards desired positions. Touch sensors embedded within the material allow direct control, and an online user interface provides high-level kinematic goals to the system. A hierarchical control system parses various inputs and determines actuation based on safety protocols and prioritization algorithms. Development includes hardware and software to enable modular expansion. This research demonstrates strategies for embedded networks in interactive kinematic structures and opens the door for deeper investigations such as artificial intelligence in control algorithms, material computation, as well as real-time modeling and simulation of structural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_299
id ecaade2020_299
authors Colmo, Claudia and Ayres, Phil
year 2020
title 3d Printed Bio-hybrid Structures - Investigating the architectural potentials of mycoremediation
doi https://doi.org/10.52842/conf.ecaade.2020.1.573
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 573-582
summary In this paper, we present a speculative design concept for a mycelium-based living bio-hybrid architectural system. The system combines inoculated lignocellulosic substrates with soil-based 3d printed structures that function as growth scaffolds, material boundaries and spatial organisers. The primary objective of the system is to exploit mycelium as a living remediator of contaminated sites, in the form of architectural proposition. The feasibility of this concept is investigated in two ways: 1) material composition development and process control parameters for soil-based 3d printing, 2) the synthesis of printed prototypes to determine geometric and environmental parameters for promoting colonisation of mycelium and supporting its role as both structural binder and 'Mycorestoration' agent. This work is contextualised with reference to the state-of-the-art in order to identify the research gap and articulate the contribution of a mycelium-based remediating architecture. The merits and limits of the experimental results are reflected upon and trajectories of further investigation outlined.
keywords mycelium; mycorestoration; soil contamination; 3d printing; bio-hybrid architecture; design based experimentation
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia20_564
id acadia20_564
authors Cutajar, Sacha; Costalonga Martins, Vanessa; van der Hoven, Christo; Baszyñski, Piotr; Dahy, Hanaa
year 2020
title Towards Modular Natural Fiber-Reinforced Polymer Architecture
doi https://doi.org/10.52842/conf.acadia.2020.1.564
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 564-573.
summary Driven by the ecological crisis looming over the 21st century, the construction sector must urgently seek alternative design solutions to current building practices. In the wake of emergent digital technologies and novel material strategies, this research proposes a lightweight architectural solution using natural fiber-reinforced polymers (NFRP), which elicit interest for their inherent renewability as compared to high-performance yarns. Two associated fabrication techniques are deployed: tailored fiber placement (TFP) and coreless filament winding (CFW), both favored for their additive efficiencies granted by strategic material placement. A hypothesis is formed, postulating that their combination can leverage the standalone complexities of molds and frames by integrating them as active structural elements. Consequently, the TFP enables the creation of a 2D stiffness-controlled preform to be bent into a permanent scaffold for winding rigid 3D fiber bodies via CFW. A proof of concept is generated via the small-scale prototyping and testing of a stool, with results yielding a design of 1 kg capable of carrying 100 times its weight. Laying the groundwork for a scaled-up architectural proposal, the prototype instigates alterations to the process, most notably the favoring of a modular global design and lapped preform technique. The research concludes with a discussion on the resulting techno-implications for automation, deployment, material life cycle, and aesthetics, rekindling optimism towards future sustainable practices.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_886
id sigradi2020_886
authors Lima, Elton Cristovao da Silva; Matsunaga, Cristina; Mendes, Leticia Teixeira
year 2020
title Sartorius Pavilion – Biomimicry as a design methodology for a parametric pavilion for the Serpentine Gallery/England
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 886-893
summary In order to design an ephemeral pavilion located at the Serpentine Gallery (England), an experimental design approach was developed in this paper by using biomimicry strategies associated with parametric modeling. Exploring the solution-based methodology, the analysis of the sartorius muscle anatomic features such as rotation, flexion and long shape allowed inspiring the proposal of a Sartorius Pavilion which is the object of study. The experiment was implemented throughout a parametric visual script tool resulting in a model capable of rapidly and intuitively simulating shape variations, basic structural and material attributes by modifying a set of previously defined parameters.
keywords Biomimicry, Bio-inspired Architecture, Sartorius Muscle, Parametric Pavilion, Serpentine Gallery
series SIGraDi
email
last changed 2021/07/16 11:53

_id ecaade2020_411
id ecaade2020_411
authors Muehlbauer, Manuel, Song, Andy and Burry, Jane
year 2020
title Smart Structures - A Generative Design Framework for Aesthetic Guidance in Structural Node Design - Application of Typogenetic Design for Custom-Optimisation of Structural Nodes
doi https://doi.org/10.52842/conf.ecaade.2020.1.623
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-632
summary Virtual prototypes enable performance simulation for building components. The presented research extended the application of generative design using virtual prototypes for interactive optimisation of structural nodes. User-interactivity contributed to the geometric definition of design spaces rather than the final geometric outcome, enabling another stage of generative design for the micro-structure of the structural node. In this stage, the micro-structure inside the design space was generated using fixed topology. In contrast to common optimisation strategies, which converge towards a single optimal outcome, the presented design exploration process allowed the regular review of design solutions. User-based selection guided the evolutionary process of design space exploration applying Online Classification. Another guidance mechanism called Shape Comparison introduced an intelligent control system using an inital image input as design reference. In this way, aesthetic guidance enabled the combined evaluation of quantitative and qualitative criteria in the custom-optimisation of structural nodes. Interactive node design extended the potential for shape variation of custom-optimized structural nodes by addressing the geometric definition of design spaces for multi-scalar structural optimisation.
keywords generative design; evolutionary computation; interactive machine learning; typogenetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_330
id acadia20_330
authors Yablonina, Maria; Kubail Kalousdian, Nicolas; Menges, Achim
year 2020
title Designing [with] Machines
doi https://doi.org/10.52842/conf.acadia.2020.1.330
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 330-339.
summary The aim of this research is to investigate the potential of a design and fabrication workflow that is centered around the development of task- and site-specific robotic systems for in-situ architectural making: Designing [with] Machines (D[w]M). The project proposes an alternative strategy to the established logic of design for production, in which design decisions are a function of affordances and limitations of available fabrication equipment. D[w]M engages the designer to define their own parameter ranges for the fabrication process through simultaneous development of fabrication machines and complimentary material, and architectural systems. In addition to affording more flexibility, D[w]M offers an opportunity to develop robotic fabrication systems uniquely tailored for deployment on sites that are not suited for conventional robotic equipment. In this paper, D[w]M workflow is outlined in the description of a task- and site-specific robotic system for additive fabrication of a tensile filament-wound object in an in-situ environment. Specifically, the presented project investigates design opportunities afforded by cooperative operation of multiple mobile single-axis robots deployed along linear structural elements of the given site. In utilizing column and beam elements as machine locomotion substrates, the system contributes them to the robotic assembly as parts of the in-situ digital fabrication machine.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_306
id ecaade2020_306
authors Nogueira, Alex and Romao, Luís
year 2020
title Shape Grammars as a Method to Introduce Computational Thinking in Design - The case of tiles
doi https://doi.org/10.52842/conf.ecaade.2020.1.693
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 693-702
summary For architects and other artists, shape grammars, that are part of the computational thinking concept, have been an effective initial tool of transition between the realm of design and the classic computer. The dissemination of computer science and its mindset is only possible when it is supported by adequate pedagogical processes. The presented paper demonstrates an adequate transposition of art solutions (part of tile panels by Athos Bulcao and Maria Keil) into a computational structure where innovative notations are defined in some aspects. To that end, it allows their implementation in the computer through a suitable programming language and uses those same notations to generate other solutions within the same universe of interest and research. Furthermore, an intellectual process is exposed allowing to structure the information, particularly regarding to form, to different frameworks, placing itself as an opportune methodological structure that can guide other similar experiences.
keywords Art and Design; CAAD Education and Teaching; Design Concepts and Strategies; Hybrid Shape Grammar
series eCAADe
email
last changed 2022/06/07 07:58

_id ijac202018404
id ijac202018404
authors Paul Nicholas, Gabriella Rossi, Ella Williams, Michael Bennett and Tim Schork
year 2020
title Integrating real-time multi-resolution scanning and machine learning for Conformal Robotic 3D Printing in Architecture
source International Journal of Architectural Computing vol. 18 - no. 4, 371–384
summary Robotic 3D printing applications are rapidly growing in architecture, where they enable the introduction of new materials and bespoke geometries. However, current approaches remain limited to printing on top of a flat build bed. This limits robotic 3D printing’s impact as a sustainable technology: opportunities to customize or enhance existing elements, or to utilize complex material behaviour are missed. This paper addresses the potentials of conformal 3D printing and presents a novel and robust workflow for printing onto unknown and arbitrarily shaped 3D substrates. The workflow combines dual-resolution Robotic Scanning, Neural Network prediction and printing of PETG plastic. This integrated approach offers the advantage of responding directly to unknown geometries through automated performance design customization. This paper firstly contextualizes the work within the current state of the art of conformal printing. We then describe our methodology and the design experiment we have used to test it. We lastly describe the key findings, potentials and limitations of the work, as well as the next steps in this research.
keywords Conformal printing, robotic fabrication, 3D scanning, neural networks, industry 4.0
series journal
email
last changed 2021/06/03 23:29

_id acadia20_678
id acadia20_678
authors Tursack, Hans
year 2020
title Theoretical Notes on the Aesthetics of Architectural Texture Mapping
doi https://doi.org/10.52842/conf.acadia.2020.1.678
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 678-687.
summary This paper explores several historical and contemporary examples of architecture that employ graphic texture mapping in their design processes. The technique of texture mapping is outlined as a particular formal relationship between images, geometric scaffolds, and new material explorations. Texture-mapped architecture is a relatively contemporary phenomenon that is distinct from several known genres of image-building hybrids such as media facades, Ganzfeld art installations, building-scale projection experiments, postmodern semiotic billboards, and affective ornamental pattern strategies. Architectural texturing utilizes UV editors in modeling and animation software platforms to place and edit two-dimensional graphics or photographic images on three-dimensional models. UV editors allow an unprecedented degree of precision during the design process; image and geometry can be manipulated in tandem and two-dimensional source material can be edited and live-updated. Material manifestations of this process use commercial printing technologies and one-off processes developed by artists and designers to generate building-grade printed envelopes. The theoretical wager of the paper is that the accessibility/availability of texture mapping techniques, digital printing technologies, and new materials (such as 3M’s vinyl wraps) have triggered a graphic impulse in contemporary experimental architecture culture. Images, color theory, and flat graphics are now central to compositional theory as it is taught in academia and applied in the field.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia23_v3_111
id acadia23_v3_111
authors Markopoulou, Areti
year 2023
title Urban Mining: Material Resources for Circular Construction
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The material balance of the Earth is being challenged. The year 2020 was marked as the year when the total weight of human-made materials globally surpassed the weight of all life on Earth, while it is estimated that in the years to come the growth rate of mass added to the anthroposphere will increase exponentially (Elhacham et al., 2020). In this context of hypergrowth coupled with the climate emergency, the growing rate of urbanization and the increasing social and political awareness on the matters of the Anthropocene, the topics of resource depletion or insufficiency are being reframed. This keynote lecture at ACADIA 2023 highlights the importance of redefining resources and is introducing a new cultural, design and construction paradigm. Operating from an abundance mindset rather than from scarcity (Gausa et al., 2020) presents a new paradigm, particularly relevant in the design and production of the built environment. This approach expands the definition of resources, encompassing raw, non-raw, renewable, and recyclable materials. Shifting attention to the Anthroposphere as a source rather than just a destination for processed goods has the potential to disrupt linear design patterns and enhance circularity in cities and the built environment.
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id ijac202018205
id ijac202018205
authors Ahlquist, Sean
year 2020
title Negotiating human engagement and the fixity of computational design: Toward a performative design space for the differently-abled bodymind
source International Journal of Architectural Computing vol. 18 - no. 2, 174-193
summary Computational design affords agency: the ability to orchestrate the material, spatial, and technical architectural system. In this specific case, it occurs through enhanced, authored means to facilitate making and performance—typically driven by concerns of structural optimization, material use, and responsivity to environmental factors—of an atmospheric rather than social nature. At issue is the positioning of this particular manner of agency solely with the architect auteur. This abruptly halts—at the moment in which fabrication commences—the ability to amend, redefine, or newly introduce fundamentally transformational constituents and their interrelationships and, most importantly, to explore the possibility for extraordinary outcomes. When the architecture becomes a functional, social, and cultural entity, in the hands of the idealized abled-bodied user, agency—especially for one of an otherly body or mind—is long gone. Even an empathetic auteur may not be able to access the motivations of the differently-abled body and neuro- divergent mind, effectively locking the constraints of the design process, which creates an exclusionary system to those beyond the purview of said auteur. It can therefore be deduced that the mechanisms or authors of a conventional computational design process cannot eradicate the exclusionary reality of an architectural system. Agency is critical, yet a more expansive terminology for agent and agency is needed. The burden to conceive of capacities that will always be highly temporal, social, unpredictable, and purposefully unknown must be shifted far from the scope of the traditional directors of the architectural system. Agency, and who it is conferred upon, must function in a manner that dissolves the distinctions between the design, the action of designing, the author of design, and those subjected to it.
keywords Adaptive environments, neurodiversity, inclusion, systems thinking, computational design, disability theory, material systems, design agency
series journal
email
last changed 2020/11/02 13:34

_id acadia20_108p
id acadia20_108p
authors Akbarzadeh, Masoud; Ghomi, Ali Tabatabaie; Bolhassani, Mohammad; Akbari, Mostafa; Seyedahmadian, Alireza; Papalexiou, Konstantinos
year 2020
title Saltatur
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 108-113.
summary The Saltatur (Dancer in Latin) demonstrates innovative research in the design and fabrication of a prefab structure consisting of spatial concrete nodes assembled in a compression-only configuration. The compression-only body is kept in equilibrium using the post-tensioning steel rods at the top and the bottom of the structure, supporting an ultra-thin glass structure on its top. A node-based assembly was considered as a method of construction. An innovative detailing was developed that allows locking each member in its exact location in the body, obviating the need for a particular assembly sequence. A bespoke steel connection transfers the tensile forces between the concrete members effectively. Achieving a high level of efficiency in utilizing concrete for spatial systems requires a robust and powerful structural design and fabrication approach that has been meticulously exhibited in this project. The structural form of the project was developed using a three-dimensional geometry-based structural design method known as 3D Graphic Statics with precise control over the magnitude of the lateral forces in the system. The entire concrete body of the structure is held in compression by the tension ties at the top and bottom of the structure with no horizontal reactions at the supports. This particular internal distribution of forces in the form of the compression-only body reduces the bending moment in the system and, therefore, the required mass to span such a distance.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_297
id sigradi2020_297
authors Arboleda Pardo, Juan Gabriel; García-Alvarado, Rodrigo; Martínez Rocamora, Alejandro
year 2020
title BIM-modeling and programming of curved concrete walls for 3D-printed construction
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 297-305
summary This article presents the parametric design and modeling in BIM of curved walls for 3d-printed construction in concrete, seeking to manage the reduction of materials and construction execution times, and enhance its architectural expression. The process described here is structured in the following phases: (i) conceptual preliminary design exploration, defining formal parameters in Revit, (ii) parametric modeling with Dynamo and Revit, (iii) integration of structural validation and printing programming of the robotic arm, and examples of execution with 3D-printed construction.
keywords BIM, Parametric programming, 3D-printed Construction, Curved wall, Digital fabrication
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_260
id sigradi2020_260
authors Bhattacharya, Maharshi; Jung, Francisco
year 2020
title Multi-Mission Space Exploration Vehicle (MMSEV) Nosecone Design Optimization
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 260-266
summary This paper addresses ergonomic drawbacks in NASA’s modular Multi-Mission Space Exploration Vehicle’s (MMSEV) latest prototype, 2B’s nosecone, to propose new iteration based on considerations such as mass minimization, visibility maximization, and structural integrity. With 2B as a benchmark, and using computational tools typically used in the AEC industry to carry out FEA analysis, comparisons are made with potential design changes. The numerical and visual data such as weight, and stress distribution, provided by the benchmark analysis, served as metrics for comparison and redesign. In turn, this design development exercise attempts to bring together the different design approaches to design, held by human- factors designers and structural engineers.
keywords Form, Optimization, Finite Element Analysis, Space-Exploration Vehicle, Stress-Analysis
series SIGraDi
email
last changed 2021/07/16 11:49

_id sigradi2020_615
id sigradi2020_615
authors Borges, Marina Ferreira
year 2020
title Structural Flexibility and Space Articulation in Architectural Design Teaching
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 615-620
summary The separation between architectural design teaching and structural education corroborates the division of labor in professional practice that cannot support the development of dialectical relations between architects and engineers. Thus, the proposal of hybridization between architectural design teaching and structural education developed in this article presupposes a shift from the centrality given to the plastic and spatial principles of the architectural form to the development of approaches that are oriented towards the recognition of the material and constructive questions which aided by the parametric and structural behavior simulation tools allow the development of complex relationships based on tectonic procedural logic.
keywords Architectural design teaching, Structural education, Parametric design, Performance-based design
series SIGraDi
email
last changed 2021/07/16 11:52

_id acadia20_226p
id acadia20_226p
authors Borhani, Alireza; Kalantar, Negar
year 2020
title Interlocking Shell
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 226-231
summary With a specific focus on robotic stereotomy, two full-scale vault structures were designed to explore the potential of self-standing building structures made from interlocking components; these structures were fabricated with a track-mounted industrial-scale robot (ABB 4600). To respond to the economic affordances of robotic subtractive cutting, all uniquely shaped structural modules came from one block of material (48"" x96"" x36""). Through the discretization of curvilinear tessellated vault surfaces into a limited number of uniquely shaped modules with embedded form-fitting connectors, the project exhibited the potential for programming a robot to cut ruled surfaces to produce freeform shells of any kind. Representing nearly zero-waste construction, the developed technology can potentially be used for self-supporting emergency shelters and field medical clinics, facilitating easy shipping and speedy assembly. Without using any scaffolding, a few people can erect and dismantle an entire mortar-free structure at the construction site. The disassembled structure occupies minimal space in storage, and the structure’s pieces can be transported to the site in stacks. Robot milling is a common technique for removing material to transform a block into a sculptural shape. Unlike milling techniques that produce significant waste, we used a hotwire that sliced through a Geofoam block to create almost no waste pieces. Since the front side of every module was concurrent with the backside of the next one, such a decision allowed to operate just one cut per front side of each module. In this case, by having three cuts, two neighboring modules were fabricated. The form of the structure and its modules emerged from the constraints of the fabrication technique, aiming to establish a feedback loop between geometry, material, simulation, and tool. By cross-referencing geometric data across Grasshopper, a customized tessellation script was made to breakdown a vault into its modular ruled surface constructs.
series ACADIA
type project
email
last changed 2021/10/26 08:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_587138 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002