CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 644

_id ijac202018302
id ijac202018302
authors Brath Jensen, Mads; Isak Worre Foged and Hans Jørgen Andersen
year 2020
title A framework for interactive human–robot design exploration
source International Journal of Architectural Computing vol. 18 - no. 3, 235-253
summary This study seeks to identify key aspects for increased integration of interactive robotics within the creative design process. Through its character as foundational research, the study aims to contribute to the advancement of new explorative design methods to support architects in their exploration of fabrication and assembly of an integrated performance-driven architecture. The article describes and investigates a proposed design framework for supporting an interactive human–robot design process. The proposed framework is examined through a 3-week architectural studio, with university master students exploring the design of a brick construction with the support of an interactive robotic platform. Evaluation of the proposed framework was done by triangulation of the authors’ qualitative user observations, quantitative logging of the students’ individual design processes, and through questionnaires completed after finishing the studies. The result suggests that interactive human–robot fabrication is a relevant mode of design with positive effect on the process of creative design exploration.
keywords Design methods, robotic design processes, interactive robotics, computational design, design exploration, creativity
series other
type normal paper
email
last changed 2020/11/02 13:39

_id ijac202018403
id ijac202018403
authors Dagmar Reinhardt, Matthias Hank Haeusler, Kerry London, Lian Loke, Yingbin Feng, Eduardo De Oliveira Barata, Charlotte Firth, Kate Dunn, Nariddh Khean, Alessandra Fabbri, Dylan Wozniak-O’Connor and Rin Masuda
year 2020
title CoBuilt 4.0: Investigating the potential of collaborative robotics for subject matter experts
source International Journal of Architectural Computing vol. 18 - no. 4, 353–370
summary Human-robot interactions can offer alternatives and new pathways for construction industries, industrial growth and skilled labour, particularly in a context of industry 4.0. This research investigates the potential of collaborative robots (CoBots) for the construction industry and subject matter experts; by surveying industry requirements and assessments of CoBot acceptance; by investing processes and sequences of work protocols for standard architecture robots; and by exploring motion capture and tracking systems for a collaborative framework between human and robot co-workers. The research investigates CoBots as a labour and collaborative resource for construction processes that require precision, adaptability and variability.Thus, this paper reports on a joint industry, government and academic research investigation in an Australian construction context. In section 1, we introduce background data to architecture robotics in the context of construction industries and reports on three sections. Section 2 reports on current industry applications and survey results from industry and trade feedback for the adoption of robots specifically to task complexity, perceived safety, and risk awareness. Section 3, as a result of research conducted in Section 2, introduces a pilot study for carpentry task sequences with capture of computable actions. Section 4 provides a discussion of results and preliminary findings. Section 5 concludes with an outlook on how the capture of computable actions provide the foundation to future research for capturing motion and machine learning.
keywords Industry 4.0, collaborative robotics, on-site robotic fabrication, industry research, machine learning
series journal
email
last changed 2021/06/03 23:29

_id caadria2020_132
id caadria2020_132
authors Dąbrowska-Żółtak, Karolina, Wojtowicz, Jerzy and Wrona, Stefan
year 2020
title Robotown
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 413-422
doi https://doi.org/10.52842/conf.caadria.2020.2.413
summary The potential robotization of architecture, its fabrication and assembly impacts design education today. In the near future it will contribute to the emergence of the new forms of urbanization. Our design research is focusing on the small scale urban conditions and build fragments that make up intelligent city. It is undertaken by the multidisciplinary team of architects and mechatronics engineers in academic context. The ROBOtown is understood as an urban structure containing intelligent town fragments. It has to consider the participatory design process involving architecture, mechatronic, robotics and lessons derived from Industry 4.0.
keywords Design; Internet of Things; Architectronics; Mechatronics; Robotics
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia20_720
id acadia20_720
authors Farahi, Behnaz
year 2020
title Can the subaltern speak?
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 720-729.
doi https://doi.org/10.52842/conf.acadia.2020.1.720
summary How could design be used as a method of interrogation for addressing larger cultural, social, or political issues? How could we explore the possibility of using emerging technologies such as robotics and artificial intelligence in order to subvert the status quo? The project presented in this paper is inspired by the historical masks, known as Niqab, worn by the Bandari women from southern Iran. It has been said that these masks were developed during Portuguese colonial rule as a way to protect the wearer from the gaze of slave masters looking for pretty women. In this project two robotic masks seemingly begin to develop their own language to communicate with each other, blinking their eyelashes in rapid succession, using Morse code generated by artificial intelligence (AI). The project draws on a Facebook experiment where two AI bots began to develop their own language. It also draws on an incident when an American soldier used his eyes to blink the word “TORTURE” using Morse code during his captivity in Vietnam, and stories of women using code to report domestic abuse during the COVID-19 lockdown. Here the “wink” of the sexual predator is subverted into a language to protect women from the advances of a predator. Through the lens of the design methodology that is referred to as “critical making,” this project bridges AI, interactive design, and critical thinking. Moreover, while most feminist discourse takes a Eurocentric view, this project addresses feminism from a non-Western perspective.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_168
id caadria2020_168
authors Fingrut, Adam
year 2020
title Integrating Design Studio Teaching with Computation and Robotics in Hong Kong
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 343-350
doi https://doi.org/10.52842/conf.caadria.2020.2.343
summary There is a persistent need among Hong Kong Architecture students to develop greater aptitude for critical and design thinking. The mechanics of criticality entail observation, reflection and the development of a knowledgeable response. This important process aligns with a tool-based iterative design research approach, where a cycle of action, observation, reflection, and reaction can take place. In order to complement fundamentals in architectural design, a focus on tools and tool-making approaches toward the development of a critical architectural proposal needs to be incorporated into core curriculum. Through the integration of robotics, automation and computational design approaches into the design studio environment, tool making for producing architectural media (drawings and models) can most effectively be explored. With an emphasis on design and programming tools for component fabrication and assembly, students can develop their own criterion for evaluation as a knowledge-based response to their investigations and proposed architectural systems.
series CAADRIA
email
last changed 2022/06/07 07:50

_id artificial_intellicence2019_129
id artificial_intellicence2019_129
authors Hua Chai, Liming Zhang, and Philip F. Yuan
year 2020
title Advanced Timber Construction Platform Multi-Robot System for Timber Structure Design and Prefabrication
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_9
summary Robotic Timber Construction has been widely researched in the last decade with remarkable advancements. While existing robotic timber construction technologies were mostly developed for specific tasks, integrated platforms aiming for industrialization has become a new trend. Through the integration of timber machining center and advanced robotics, this research tries to develop an advanced timber construction platform with multi-robot system. The Timber Construction Platform is designed as a combination of three parts: multi-robot system, sensing system, and control system. While equipped with basic functions of machining centers that allows multi-scale multifunctional timber components’ prefabrication, the platform also served as an experimental facility for innovative robotic timber construction techniques, and a service platform that integrates timber structure design and construction through real-time information collection and feedback. Thereby, this platform has the potential to be directly integrated into the timber construction industry, and contributes to a mass-customized mode of timber structures design and construction.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2020_078
id caadria2020_078
authors Joyce, Gabriella and Pelosi, Antony
year 2020
title Robotic Connections for CLT Panels
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 403-412
doi https://doi.org/10.52842/conf.caadria.2020.2.403
summary In a climate where standard methods of construction are being challenged, developments in engineered timbers are allowing mass timber construction to be explored as a sustainable alternative to current building methods that can change the future of the built environment. Cross-laminated timber (CLT) is at the forefront of this evolution and, with the advancement in computational design and digital fabrication tools, there lies an opportunity to redefine standard construction. This project creates connections inspired by traditional Japanese joinery that have been adapted to be used for the panel construction of CLT structures. Using a combination of digital modelling and advanced digital fabrication, the project utilizes CLT offcuts as a primary connection material. The system not only reduces waste but also mitigates thermal bridging and lowers the number of connection points whilst increasing the ease of building and fabrication. Connection systems are designed and prototyped using a robotic arm and are then evaluated within the context of a building scale and considers largeâ€scale fabrication and onâ€site assembly whilst continuing to focus on the reduction of waste.
keywords Robotics; CLT; Connections; Waste; Timber
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_142p
id acadia20_142p
authors Kilian, Axel
year 2020
title The Flexing Room
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 142-147
summary Robotics has been largely confined to the object category with fewer examples at the scale of buildings. Robotic buildings present unique challenges in communicating intent to the enclosed user. Precedent work in architectural robotics explored the performative dimension, the playful and interactive qualities, and the cognitive challenges of AI systems interacting with people in architecture. The Flexing Room robotic skeleton was installed at MIT at its full designed height for the first time and tested for two weeks in the summer of 2019. The approximately 13-foot-tall structure is comprised of 36 pneumatic actuators and an active bend fiberglass structure. The full height allowed for a wide range of postures the structure could take. Acoustic monitoring through Piezo pickup mics was added that allowed for basic rhythmic responses of the structure to people tapping or otherwise triggering the vibration sensors. Data streams were collected synchronously from Kinect skeleton tracking, piezo pickup mics, camera streams, and posture data. The emphasis in this test period was first to establish reliable hardware operations at full scale and second to record correlated data streams of the sensors installed in the structure together with the actuation triggers and the human poses of the inhabitant. The full-scale installation of hardware was successful and proved the feasibility of the structural and actuation approach previously tested on a one-level setup. The range of postures was increased and more transparent for the occupant. The perception of the structure as space was also improved as the system reached regular ceiling height and formed a clearer architectural scale enclosure. The ambition of communicating through architectural postures has not been achieved yet, but promising directions emerged from the test and data collection
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id cdrf2019_290
id cdrf2019_290
authors Mary Spyropoulos and Alisa Andrasek
year 2020
title Material Disruption
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_27
summary This paper examines the role of computational simulation of material processes with robotics fabrication, with the intent of examining its implications for architectural design and construction. Simulation techniques have been adopted in the automotive industry amongst others, advancing their design and manufacturing outputs. At present, architecture is yet to explore the full potential of this technology and their techniques. The need for simulation is evident in exploring the behaviours of materials and their relative properties. Currently, there is a distinct disconnect between the virtual model and its fabricated counterpart. Through research in simulation, we can begin to understand and clearly visualize the relationship between material behaviours and properties that can lead to a closer correlation between the digital design and its fabricated outcome. As the first phase of investigation, the material of clay is used due to its volatile qualities embedded within the material behaviour. The input geometry is constrained to rudimentary extruded forms in order to not obscure the behaviour of the material, but rather allow for it to drive the machine-making process.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2020_334
id ecaade2020_334
authors Ntzoufras, Sotirios, Oungrinis, Konstantinos-Alketas, Liapi, Marianthi and Papamanolis, Antonios
year 2020
title Robotic Swarms in Architectural Design - A communication platform bridging design analysis and robotic construction
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 453-462
doi https://doi.org/10.52842/conf.ecaade.2020.2.453
summary The research work fueling this paper examines ?ptimal approaches for bridging design analysis and robotic spatial construction. In this context, the paper presents the development of a unified platform for managing a swarm of robotic fabrication agents. The goal is the development of a streamlined methodology that guides the conversion of a design model into construction data code that can be assigned to the robotic swarm for fabrication.The work focuses on bridging architectural design platforms and distributed automation processes, on the one hand, and on the other, it targets the development of a functional management tool for adjusting and optimizing fabrication. A crucial parameter considered is the monitoring and assessment of all stages of the proposed process. This involves a constant exchange of information between the various actors, such as the swarm agents, the construction data and the designer - user. As a result, the construction process is treated as a constant reassessment and re-adjustment of the design parameters rather than the linear result of the original set of construction data. Therefore, the proposed system cannot be described as reactive, but acts responsively in a ``sensible'' manner.
keywords Swarm Robotics; Adaptive Fabrication; Robotic Construction Communication Platform; Sensible System
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac202018405
id ijac202018405
authors Olga Mesa, Saurabh Mhatre and Dan Aukes
year 2020
title CREASE: Synchronous gait by minimizing actuation through folded geometry
source International Journal of Architectural Computing vol. 18 - no. 4, 385–403
summary The Age of the Fourth Industrial Revolution promises the integration and synergy of disciplines to arrive at meaningful and comprehensive solutions. As computation and fabrication methods become pervasive, they present platforms for communication. Value exists in diverse disciplines bringing their approach to a common conversation, proposing demands, and potentials in response to entrenched challenges. Robotics has expanded recently as computational analysis, and digital fabrication methods are more accurate and reliable. Advances in functional microelectromechanical components have resulted in the design of new robots presenting alternatives to traditional ambulatory robots. However, most examples are the result of intense computational analysis necessitating engineering expertise and specialized manufacturing. Accessible fabrication methods like laminate techniques propose alternatives to new robot morphologies. However, most examples remain overly actuated without harnessing the full potential of folds for locomotion. Our research explores the connection between origami structures and kinematics for the generation of an ambulatory robot presenting efficient, controlled, and graceful gait with minimal use of components. Our robot ‘Crease’ achieves complex gait by harnessing kinematic origami chains rather than relying on motors. Minimal actuation activates the folds to produce variations in walk and direction. Integrating a physical iterative process with computational analysis, several prototypes were generated at different scales, including untethered ones with sensing and steering that could map their environment. Furthering the dialogue between disciplines, this research contributes not only to the field of robotics but also architectural design, where efficiency, adjustability, and ease of fabrication are critical in designing kinetic elements.
keywords Digitals fabrication, robotics, origami, laminate construction, smart geometry, digital manufacturing and materials, smart materials
series journal
email
last changed 2021/06/03 23:29

_id ecaade2020_138
id ecaade2020_138
authors Patel, Sayjel Vijay, Tchakerian, Raffi, Lemos Morais, Renata, Zhang, Jie and Cropper, Simon
year 2020
title The Emoting City - Designing feeling and artificial empathy in mediated environments
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 261-270
doi https://doi.org/10.52842/conf.ecaade.2020.2.261
summary This paper presents a theoretical blueprint for implementing artificial empathy into the built environment. Transdisciplinary design principles have oriented the creation of a new model for autonomous environments integrating psychology, architecture, digital media, affective computing and interactive UX design. 'The Emoting City', an interactive installation presented at the 2019 Shenzhen Bi-City Biennale of Urbanism/Architecture, is presented as a first step to explore how to engage AI-driven sensing by integrating human perception, cognition and behaviour in a real-world scenario. The approach described encompasses two main elements: embedded cyberception and responsive surfaces. Its human-AI interface enables new modes of blended interaction that are conducive to self-empathy and insight. It brings forth a new proposition for the development of sensing systems that go beyond social robotics into the field of artificial empathy. The installation innovates in the design of seamless affective computing that combines 'alloplastic' and 'autoplastic' architectures. We believe that our research signals the emergence of a potential revolution in responsive environments, offering a glimpse into the possibility of designing intelligent spaces with the ability to sense, inform and respond to human emotional states in ways that promote personal, cultural and social evolution.
keywords Artificial Intelligence; Responsive Architecture; Affective Computation; Human-AI Interfaces; Artificial Empathy
series eCAADe
email
last changed 2022/06/07 07:59

_id ijac202018303
id ijac202018303
authors Pedersen, Jens; Narendrakrishnan Neythalath, Jay Hesslink, Asbjørn Søndergaard and Dagmar Reinhardt
year 2020
title Augmented drawn construction symbols: A method for ad hoc robotic fabrication
source International Journal of Architectural Computing vol. 18 - no. 3, 254-269
summary The global construction industry is one the least productive sectors over a 30-year period, which arguably could be related to virtually no implementation of digital and automation technologies within the construction industry. Construction processes arguably consist of expensive manual labor or manual operation of mechanized processes, where hand-drawn markings on work-objects or partly build structures are used to inform and steer the construction process or allows for ad hoc adjustments of elements. As such, the use of on-object, hand-drawn information is considered integral to the modus operandi of a plurality of construction trades, where timber construction and carpentry are of special interest. In contrast, emerging methods of digital production in timber construction implicitly or explicitly seek to eliminate the interpretive component to the construction work, imposing a top-down paradigm of file-to-factory execution. While such systems offer a performance increase compared to manual labor, it is notoriously sensitive to construction tolerances and requires a high level of specialism to be operated, which could alienate craft-educated workers. This research argues that developing methods for digital production compatible with on- site human interpretation and adaptation can help overcome these challenges. In addition, these methods offer the opportunity to increase the robustness and versatility of digital fabrication in the context of the construction site. The article reports on a new method titled “augmented drawn construction symbols” that through a visual communication system converts on-object hand-drawn markings to CAD drawings and sends them to a robotic system. The process is demonstrated on a full-scale prototypical robot setup.
keywords Augmented reality, augmented robotics, computational craft, human machine interface
series other
type normal paper
email
last changed 2020/11/02 13:40

_id caadria2020_249
id caadria2020_249
authors Poustinchi, Ebrahim, Fehrenbach, Joshua and Holmes, Tyler
year 2020
title Ro-Puzzle - A robotic proposal for moving architecture
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 433-442
doi https://doi.org/10.52842/conf.caadria.2020.2.433
summary This paper presents a project-based research study called Ro-puzzle-a robotic architectural "puzzle," using robotic solutions to illustrate the possibility of an animated/dynamic architectural composition and configurations in the physical world. Through studying super-comportment (Wiscombe, 2014) in both dynamic and static scenarios, this research proposes a new reading to the traditional robotic task of "pick-and-place", through an intuitive motion design process using a custom-made bridge software, Oriole. By revisiting the notion of robotics in the field of design/architecture, Ro-Puzzle investigates the design possibilities of robotics, not merely as fabrication tools, but possibly as physical extensions of the design software into the physical world of architecture, and as a way to expand the digital design imaginations/possibilities beyond the digital screens. In this manuscript and initially tested at the desktop scale, Ro-Puzzle research investigation demonstrated the possibilities of robots as architectural "components" within the architecture/building. This research shows that through the development of custom software/hardware platforms, it is possible to domesticize robotic technology as an active agent in the design process through physical simulation.
keywords Robotics; Design; Animation; Robotic Architecture; Dynamic Architecture
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2021_51
id sigradi2021_51
authors Poustinchi, Ebrahim
year 2021
title PX01-Switch: A Hardware Extension for KUKA Robot Controller Enabling Realtime Safe Operation
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1223–1234
summary PX01-Switch is a research investigation based on an internationally filed patent by the author, focused on human-robot interaction and robotic control/motion in the field of design (Poustinchi, E. 2020). Using hardware solutions, PX01-Switch enables users—with limited or no programming background, to convert any simple or complicated “offline” developed robotic operations for KUKA robots, to realtime online operational strategies without needing any additional software package or coding knowledge. Operating as a hardware plug-in, PX01-Switch—as a device, can be added to any KUKA robot with the 4th generation controller—KRC4, regardless of the robot's type and payload. PX01-Switch aims to make realtime robotic interaction more accessible to general users, by simplifying some of the advanced programming aspects of the process, at the cost of reducing the operation/interaction resolution.
keywords Interface design, Human Robot Interaction, Robotics, Design, Digital fabrication
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2020_594
id sigradi2020_594
authors Poustinchi, Ebrahim; Hashemi, Mona; Krivanek, Cory
year 2020
title Physical Interface for Robotic Marionette Camera (RMC): Hardware Controlling Platform for Robotic Videography Motion Design
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 594-599
summary This project-based research is an investigation on controlling robotic videography/camera through an interactive physical interface. Here referred to as Robotic Marionette Camera (RMC), this research project is enabling designers and videographers to design precise robotic videography scenarios and camera-paths in the physical world with similar qualities to the digital design environments.Using the ideas of a “digital” camera in design software platforms, RMC looks at concepts such as aiming, zooming in and out, panning, orbiting, and other motions/operations borrowed from cinematography, such as tilting, rolling and trucking amongst others.As a physical/hardware interface, RMC enables real-time interaction with an industrial robot arm through a custom-made hardware controller. Using a tangible interface, RMC users can design, edit, and program the robotic videography paths interactively without a need for programming knowledge.
keywords Robotics, Design, Interface Design, Videography, Human-Robot Interaction
series SIGraDi
email
last changed 2021/07/16 11:52

_id sigradi2020_291
id sigradi2020_291
authors Quitral-Zapata, Francisco Javier; González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Martínez-Rocamora, Alejandro
year 2020
title Workflow for a Timber Joinery Robotics
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 291-296
summary We present a novel workflow for timber joinery robotics in low-rise building construction. A parametric 3D model that associates architectural design, structure geometry and robotic fabrication information was implemented using only CAD-based visual robot programming. Our case study is the design and manufacturing process of a two-story timber-framed dwelling. The main frames of the structure were assembled with mortise and tenon timber joints machined in glue-laminated timber using a 7-axis industrial robot in a wood company. This pioneering experience aims to apply timber framing robotics to social housing in emerging countries.
keywords Robots in architecture, Robotic timber construction, Timber framing, Timber Joinery Robotics, Visual robot programming
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_335
id ecaade2020_335
authors Rezaeicherati, Amirhossein and Mahdavinejad, Mohammadjavad
year 2020
title SoRo Responsive Wall - Soft robotics for human-oriented architecture
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-630
doi https://doi.org/10.52842/conf.ecaade.2020.2.623
summary Designing and making an interactive architecture that is able to respond to the environment and human behavior generally requires a variety of mechanical and electronic devices, different kinds of joints and components, and sometimes dangerous equipment that may harm users. They mostly consist of rigid materials which usually need to be covered or modified to be more appealing and pleasant. What if the structure itself feels comfortable and friendly, and moves gently in order to create a bonding with people? In this research, we propose a soft architecture that can interact and respond using soft robotics principles. We have designed a human-friendly soft robotic wall, that can function as a shelter in urban spaces and changes its form by human presence. Utilizing pneumatic actuation along with soft materials using simple mechanisms results in a safe and soft architecture. Through several prototypes within which the movement of the module is studied and analyzed, we used cloth and air balloons instead of silicon in the 1:15 model to create an inexpensive module that is feasible on a 1:1 scale.
keywords Soft Robotics; Responsive Architecture; Interactive Architecture; Human-Oriented; Soft Architecture
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2020_855
id sigradi2020_855
authors Salinas Arriagada, Alexis; García Alvarado, Rodrigo; Carrasco Perez, Patricio
year 2020
title Bio-mimetic design for architecture built by 3D robotic printing
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 855-862
summary This work presents a parametric development for Architecture by 3D printing, through robotic arms. It addresses a bio-mimetic design approach based on morphological features of animal beings, and develops a spectrum of design possibilities for vertical pieces. The measurements arising from the process extrusion and the possibilities of eccentricity of the manufacturing cord are exposed. As well as variables for design, like the own gravitational restrictions and vertical growth, both in morphological and constructive logic, as a search for relationships closer to the natural world. Suggesting that the new deposition construction systems call for an architecture based on biological principles.
keywords Architecture, Parametric Design, Bio-mimetic, Robotics, 3D-Printed Construction
series SIGraDi
email
last changed 2021/07/16 11:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_706096 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002