CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id ecaade2020_486
id ecaade2020_486
authors Teng, Teng, Jia, Mian and Sabin, Jenny
year 2020
title Scutoid Brick - The Designing of Epithelial cell inspired-brick in Masonry shell System
doi https://doi.org/10.52842/conf.ecaade.2020.1.563
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 563-572
summary This paper focuses on the design of individual bricks in a masonry shell system that are inspired and informed by the reorganization of epithelial cells within tissues. Starting from a newly discovered shape called "Scutoid", we first investigated how epithelial cells within living animals are packed three dimensionally within tissues. We focused on the living mechanisms within these cells that facilitate tissue curvature in the creatures' organs, skin, and blood vessels. By utilizing this generative geometric approach, we created a series of parametric generators and modeling kits to represent this mechanism and process. We then explored the potential for adopting this mechanism into larger-scale settings. Meanwhile, we discovered that the deformation of individual epithelial cells during the bending process generates an intriguing triangular connection along the bending direction. We managed to translate this unique feature to the architectural scale as a joint system for connecting bricks in a masonry shell structure. Based on the above findings, we designed and fabricated a set of models for the masonry shell structure that are generated from scutoid bricks and this unique joint. The geometrical characteristics of scutoid bricks allows the packing of four bricks with just two joints. The work that we have generated thus far contributes to solving issues of shell design and fabrication from the perspective of individual units. The result of the shell structure model demonstrates that applying the epithelial cell inspired-block masonry system is a feasible approach for the construction of shell structures.
keywords Epithelial cell; Scutoid; Bio-inspired Design; Generative Design; Masonry shell
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2020_314
id ecaade2020_314
authors Das, Avishek, Worre Foged, Isak and Jensen, Mads Brath
year 2020
title Designing with a Robot - Interactive methods for brick wall design using computer vision
doi https://doi.org/10.52842/conf.ecaade.2020.2.605
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 605-612
summary The deterministic and linear nature of robotic processes in architectural construction often allows no or very little adjustments during the fabrication process. If any need for modification arise the process is usually interrupted, changes are accommodated, and the process is resumed or restarted. The rigidity in this fabrication process leaves little room for creative intervention and human activities and robotic process are often considered as two segregated processes.The paper will present and discuss the methodological and design challenges of interactive robotic fabrication of brickwork with an industrial robotic arm, a webcam and bricks with varying color tones. Emphasis will be on the integration of external computer vision libraries within Rhino Grasshopper to augment the interactive robotic process. The paper will describe and demonstrate a framework comprising (1) robotic pick and place, material selection and evaluation using computer vision, (2) interactive robotic actuation and (3) the role of human input during a probabilistic fabrication-based design process.
keywords interactive robotic fabrication; human robot collaboration; computer vision; masonry; machine learning
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2020_257
id caadria2020_257
authors Lu, Yao, Birol, Eda Begum, Johnson, Colby, Hernandez, Christopher and Sabin, Jenny
year 2020
title A Method for Load-responsive Inhomogeneity and Anisotropy in 3D Lattice Generation Based on Ellipsoid Packing
doi https://doi.org/10.52842/conf.caadria.2020.1.395
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 395-404
summary 3D lattice structures are gaining widespread application in multiple design fields. While the number of projects that utilize load-responsive inhomogeneous and anisotropic 3D lattices in design applications increase, accessible and effective algorithmic generation methodologies remain lacking. This paper addresses this gap by introducing a novel computational method for controlled load-responsive inhomogeneity and anisotropy in 3D lattice generation. The presented methods employ a responsive Ellipsoid Packing algorithm informed by the global tensor field of the packing geometry, followed by a Kissing Ellipsoids algorithm to generate the lattice. Load specific anisotropy and inhomogeneity in the ellipsoid packing process is achieved in response to the magnitude and directionality values of the global tensor field and specialized responsive lattices are easily generated. The proposed Ellipsoid Packing workflow is compared to various common lattice generation algorithms. Results show improvement in mechanical performance.
keywords 3D lattice; ellipsoid packing; bio-inspired; algorithmic design; ceramic brick
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2020_391
id caadria2020_391
authors Caetano, Inês, Garcia, Sara, Pereira, Inês and Leitão, António
year 2020
title Creativity Inspired by Analysis - an algorithmic design system for designing structurally feasible façades
doi https://doi.org/10.52842/conf.caadria.2020.1.599
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 599-608
summary Although structural performance has a crucial role in the overall design, its analysis is often postponed to later design stages. This largely occurs because analysis processes are time consuming and require the use of specific models and tools. This problem is then aggravated by the number of design variations that have to be analysed until an acceptable solution is found. However, the implementation of design changes at later stages is limited, as also is their impact on the solution's final performance. Fortunately, with algorithmic design, we can overcome these limitations, as it not only supports complex designs and facilitates design changes, but also automates the production of the specific models and their subsequent analysis and optimization. In this research we focus on buildings façades, proposing an algorithmic design system to support their design, structural analysis, and optimization.
keywords Performance-based Design; Algorithmic Design; Algorithmic Structural Analysis; Algorithmic Optimization; Façade Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia20_372
id acadia20_372
authors Nelson, Cameron; Sabin, Jenny
year 2020
title Shape-Programmed Self-Assembly of Bead Structures
doi https://doi.org/10.52842/conf.acadia.2020.1.372
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 372-381.
summary This paper demonstrates the potential of a robust, low-cost approach to programmable matter using beads and string to achieve complex shapes with novel self-organizing and deformational properties. The method is inspired by the observation that beads forced together along a string will become constrained until they spontaneously rigidify. This behavior is easily observed using any household string and flat-faced beads and recalls the mechanism behind classic crafts such as push puppets. However, specific examples of architectural applications are lacking. We analyze how this phenomenon occurs through static force analyses, physical tests, and simulation, using a rigid body physics engine to validate digital prototypes. We develop a method of designing custom bead geometries able to be produced via generic 3D-printing technology, as well as a computational path-planning toolkit for designing ways of threading beads together. We demonstrate how these custom bead geometries and threading paths influence the acquired structure and its assembly. Finally, we propose a means of scaling up this phenomenon, suggesting potential applications in deployable architecture, mortarless assembly of nonfunicular masonry, and responsive architectural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_072
id caadria2020_072
authors Sheth, Urvi and Fida, Aysha
year 2020
title Funicular Structures using Topological Assemblies
doi https://doi.org/10.52842/conf.caadria.2020.1.075
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 75-84
summary Presented work is inspired by the research on funicular structures by Block Research Group and customising bricks by the first author. The research is focused on developing a mortarless construction system for funicular structures using topological assemblies on site. To make the proposed system financially viable in the India, it is suggested to limit the customisation of the topological modules. Topological assemblies interlock with its contact surfaces (Tessman, 2012). Further these force locked elements are kinematically constrained using an extrados post tensioning. As a result, the system is stable not only in complete compression, but it can also withstand lateral loads and vertical upliftment. Additionally, it is quick to assemble and dismantle the structure without foundation and by using minimum scaffolding. Therefore, the construction system can be used to build a range of temporary as well as permanent structures like temporary exhibition halls, emergency shelters, earthquake resistant structures, etc.
keywords Funicular structures; Mortarless masonry ; Topological assembly; Interlocking modules; Limited customisation
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac202018302
id ijac202018302
authors Brath Jensen, Mads; Isak Worre Foged and Hans Jørgen Andersen
year 2020
title A framework for interactive human–robot design exploration
source International Journal of Architectural Computing vol. 18 - no. 3, 235-253
summary This study seeks to identify key aspects for increased integration of interactive robotics within the creative design process. Through its character as foundational research, the study aims to contribute to the advancement of new explorative design methods to support architects in their exploration of fabrication and assembly of an integrated performance-driven architecture. The article describes and investigates a proposed design framework for supporting an interactive human–robot design process. The proposed framework is examined through a 3-week architectural studio, with university master students exploring the design of a brick construction with the support of an interactive robotic platform. Evaluation of the proposed framework was done by triangulation of the authors’ qualitative user observations, quantitative logging of the students’ individual design processes, and through questionnaires completed after finishing the studies. The result suggests that interactive human–robot fabrication is a relevant mode of design with positive effect on the process of creative design exploration.
keywords Design methods, robotic design processes, interactive robotics, computational design, design exploration, creativity
series other
type normal paper
email
last changed 2020/11/02 13:39

_id caadria2020_062
id caadria2020_062
authors Lu, Ming and Yuan, Philip F.
year 2020
title A New Algorithm to Get Optimized Target Plane on 6-Axis Robot For Fabrication
doi https://doi.org/10.52842/conf.caadria.2020.2.393
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 393-402
summary In usual robotic fabrication by 6 axis industrial robot such as KUKA ,ABB and other brands ,the usual robot's 4th ,5th and 6th axis is exactly converge in one point .When this type robot (pieper) is doing movement commands ,setting the degree of 4th axis close to zero is an ideal condition for motion stability ,especially for putting device which connect to tool head on 4th axis arm part.In plastic melting or others print which not cares the rotation angle about the printing direction(the printing direction means the effector's output normal direction vector, KUKA is X axis,ABB is Z axis) ,the optimization of 4th axis technology not only makes printing stable but also makes better quality for printing.The paper introduces a new algorithm to get the analytics solution.The algorithm is clear explained by mathematics and geometry ways. At the end of paper, a grasshopper custom plugin is provided ,which contains this new algorithm ,with this plugin, people can get the optimized target path plane more easily.
keywords 3D printing; brick fabrication; robotic; optimization algorithm; grasshopper plugin
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_474
id acadia20_474
authors Rossi, Gabriella; Walker, James; Sondergaard, Asborn; Worre Foged, Isak; Pasold, Anke; Hilmer, Jakob
year 2020
title Design-to-Manufacture Workflows of Sound-Scattering Acoustic Brick Walls
doi https://doi.org/10.52842/conf.acadia.2020.1.474
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 474-483.
summary Improving speech intelligibility in classrooms enhances information dissemination, institutional knowledge capture, and quality of learning experience. While off-the-shelf solutions are available for acoustically retrofitting existing learning spaces, they do not allow for a fine-tuned context-specific intervention. However, this possibility is enabled through bespoke digital manufacturing informed by advanced digital simulations. In this research we explore and synchronize architecture, acoustics, computation, and fabrication for the making of better sound environments. We present performance-driven design-to-manufacture (DTM) workflows for sound-scattering brick elements. We reimagine the brick as an acoustically active geometry capable of modulating the sound experience in a university classroom by improving speech intelligibility. We contextualize our research within existing methods of digital performance-based design and robotic fabrication processes, namely wire cutting and pick-and-place applications. We then detail digital methods that combine heuristics and acoustic simulation to design the bricks within the 3D modeling environment, as well as describe the processes of robotic oscillating wire cutting and adaptive pick-and-place developed for the execution of the full-scale demonstrator. Finally, we report on the results of the acoustic analysis performed on the full-scale demonstrator in situ and laboratory measurements of a representative demonstrator which validates our design hypothesis.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_400
id sigradi2020_400
authors Agirbas, Asli
year 2020
title Pneumatic Structure with Kinetic Sub-system: A Proposal for Extraterrestrial Life
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 400-405
summary Designing for extraterrestrial life is a very up-to-date issue. However, there are many constraints in this kind of designs. Designs that provide the best solution can only be obtained by identifying these constraints very well. In this study, a design concept was developed for life in Mars by considering various constraints. This design consists of a kinetic system with pneumatic structure. The preliminary scheme of this structure, which was planned to produce as a prototype, was discussed in the scope of this study.
keywords Extraterrestrial architecture, Martian base, Pneumatic structure, Kinetic structures, Algorithmic and parametric design
series SIGraDi
email
last changed 2021/07/16 11:49

_id ijac202018205
id ijac202018205
authors Ahlquist, Sean
year 2020
title Negotiating human engagement and the fixity of computational design: Toward a performative design space for the differently-abled bodymind
source International Journal of Architectural Computing vol. 18 - no. 2, 174-193
summary Computational design affords agency: the ability to orchestrate the material, spatial, and technical architectural system. In this specific case, it occurs through enhanced, authored means to facilitate making and performance—typically driven by concerns of structural optimization, material use, and responsivity to environmental factors—of an atmospheric rather than social nature. At issue is the positioning of this particular manner of agency solely with the architect auteur. This abruptly halts—at the moment in which fabrication commences—the ability to amend, redefine, or newly introduce fundamentally transformational constituents and their interrelationships and, most importantly, to explore the possibility for extraordinary outcomes. When the architecture becomes a functional, social, and cultural entity, in the hands of the idealized abled-bodied user, agency—especially for one of an otherly body or mind—is long gone. Even an empathetic auteur may not be able to access the motivations of the differently-abled body and neuro- divergent mind, effectively locking the constraints of the design process, which creates an exclusionary system to those beyond the purview of said auteur. It can therefore be deduced that the mechanisms or authors of a conventional computational design process cannot eradicate the exclusionary reality of an architectural system. Agency is critical, yet a more expansive terminology for agent and agency is needed. The burden to conceive of capacities that will always be highly temporal, social, unpredictable, and purposefully unknown must be shifted far from the scope of the traditional directors of the architectural system. Agency, and who it is conferred upon, must function in a manner that dissolves the distinctions between the design, the action of designing, the author of design, and those subjected to it.
keywords Adaptive environments, neurodiversity, inclusion, systems thinking, computational design, disability theory, material systems, design agency
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_133
id ecaade2020_133
authors Andrade Zandavali, Barbara, Paul Anderson, Joshua and Patel, Chetan
year 2020
title Embodied Learning through Fabrication Aware Design
doi https://doi.org/10.52842/conf.ecaade.2020.2.145
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 145-154
summary The contemporary culture of geometry-driven design stands as consequence of an institutionalised segregation between the fields of architecture, structure and construction. In turn, digital design methods that are both material and fabrication aware from the outset create space for uncertainty and the potential for embodied learning. Following this principle, this paper summarises the outcomes of a workshop developed to investigate the contribution of fabrication aware design methods in the production of a masonry block using both analogue and digital manufacturing. Students were to develop and investigate a design, through assembly techniques and configurations orientated around manual hot wire cutting, robotic tooling and three-dimensional printing. Outcomes were manufactured and compared regarding work precision, production time, material efficiency, cost and scalability. The analysis indicated that the most accurate results yielded from the robotic tooling system, and simultaneously exhibited the most efficient use of time, while the three-dimensional printer generated the least material waste, due to the nature of additive production. Fabrication aware design and comparative analysis enabled students to make more informed decisions while the use of rapid prototyping facilitated a relationship between digitalization and materiality allowing for a space in which uncertainty and reflection could be fostered. Reinforcing that fabrication aware design methods can unify the field and provide guidance to designers over multi-lateral aspects of a project.
keywords Fabrication-Aware Design; Rapid Prototyping; Embodiment
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2020_240
id ecaade2020_240
authors Bouza, Hayley and Aºut, Serdar
year 2020
title Advancing Reed-Based Architecture through Circular Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2020.1.117
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 117-126
summary This paper presents a completed research project that proposes a new approach for creating circular buildings through the use of biodegradable, in situ resources with the help of computational design and digital fabrication technologies. Common Reed (Phragmites Australis) is an abundantly available natural material found throughout the world. Reed is typically used for thatch roofing in Europe, providing insulation and a weather-tight surface. Elsewhere, traditional techniques of weaving and bundling reeds have long been used to create entire buildings. The use of a digital production chain was explored as a means towards expanding the potential of reed as a sustainable, locally produced, construction material. Following an iterative process of designing from the micro to the macro scale and by experimenting with robotic assembly, the result is a reed-based system in the form of discrete components that can be configured to create a variety of structures.
keywords Phragmites Australis; Reed; Discrete Design; Robotic Assembly; Circular Design; Biodegradable Architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_128
id caadria2020_128
authors Chen, Zi-Ru
year 2020
title The Guidance System of Gamification and Augmented Reality in a Museum Space
doi https://doi.org/10.52842/conf.caadria.2020.1.671
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 671-680
summary Gamification is the application of game-oriented design approaches or game-inspired mechanics to otherwise non-game contexts. Mobile guiding system is the design process of information interactions. It is the integration of information design, interaction design, and sensorial design. The e-learning system of mobile guide is able to be loaded gamification concepts and let mobile learning interestingly, diversely, and validly. The problem of the research was if we combined the concept of gamification design into museum guide services with augmented reality for non-commercial purposes, it also provided the same benefits to the promotion of museum learning and knowledge, integrating mobile devices as navigation media. It would improve more users to participate in a museum and use the guide system actively, and then arise their interest and achievement. The result was to establish a preliminary model for developing a museum mobile guide system of gamification design and augmented reality.
keywords Gamification; Museum Learning; Multimedia Guided System; Augmented Reality
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_090
id caadria2020_090
authors Crolla, Kristof and Goepel, Garvin
year 2020
title Designing with Uncertainty - Objectile vibrancy in the TOROO bamboo pavilion
doi https://doi.org/10.52842/conf.caadria.2020.2.507
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 507-516
summary This paper challenges digital preoccupations with precision and control and questions the status of tolerance, allowance and error in post-digital, human-centred architectural production. It uses the participatory action research design-and-build project TOROO, a light-weight bending-active bamboo shell structure, built in Hsinchu, Taiwan, in June 2019, as a demonstrator project to discuss how protean digital design diagrams, named 'vibrant objectiles,' are capable of productively absorbing serendipity throughout project crystallisation processes, increasing designer agency in challenging construction contexts with high degrees of unpredictability. The demonstrator project is then used to discuss future research directions that were exposed by the project. Finally, the applicability of working with 'vibrant objectiles' is discussed beyond its local project use. Common characteristics and requirements are extracted, highlighting project setup preconditions for which the scope covered by the architect needs to be both broadened and relaxed to allow for feedback from design implementation phases.
keywords Post-digital; Bamboo; Bending-active shell structures; Uncertainty; Objectile
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2019_245
id cdrf2019_245
authors Dan Liang
year 2020
title A Generative Material System of Clay Components-The Porosity Language
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_23
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary Compared with the pre-determined architecture design based on standard elements, the underlying structure of nature is more like a complex system. Porosity language, for example, which is inspired by nature, has been widely applied in the architecture context. Through the analysis of the underlying methodologies of topology in each case, the strategy is to illustrate how clay components can achieve this natural porosity language. With the help of parametric topology, the report will clearly show how the innovative language of clay components is inspired, optimized and applied. As the background of the literature, natural porosity and examples of existing cavity wall made by clay components will be compared and analyzed in Sect. 1. In Sect. 2, Steven Hall’s porous methodology will be considered as the primary topological reference. The parametric iteration topology will be stated explicitly in Sect. 3, which will direct the randomness of porosity form to the balance between structural stability and the aesthetic value. In the last chapter, different architecture applications will be studied through the supporting of micro-climate simulation.
series cdrf
email
last changed 2022/09/29 07:51

_id sigradi2020_349
id sigradi2020_349
authors González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Quitral-Zapata, Francisco Javier; Valenzuela-Astudillo, Eduardo Antonio
year 2020
title SISCOM: Cooperative Multi-Robot Systems in Construction
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 349-356
summary We present an ongoing research project focused on the development of more efficient setups for cooperative multi-robot systems in 3D-printed construction. Early kinematic simulations of a mobile robotic cell prototype with two ceiling-mounted orbiting manipulators have provided new insights into 3D printing topology. An extrusion nozzle is mounted on each collaborative robot whose primary function is to match the extrusion path to the print contour while they move along a circular path. The challenge of setting up on site a semi-structured environment for cooperative multi-robot 3D printing led us to think up a new species of construction 3D printer.
keywords 3D-Printed construction, Cooperative multi-robot system, Mobile robotic cell, Collaborative robot, Robots in architecture
series SIGraDi
email
last changed 2021/07/16 11:49

_id sigradi2020_997
id sigradi2020_997
authors Heredia Balcázar, Sandra Yunuén; Lobato Valdespino, Juan Carlos; Flores Romero, Jorge Humberto
year 2020
title URBAN ARTEFACT, Protocell for the activation of abandoned public spaces in degraded neighborhoods
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 997-1004
summary The work addresses the problem of the reactivation of abandoned or underused public spaces in degraded neighborhoods. It proposes for this the development and implementation of an urban artifact whose metaphor is the protocell. With the development of bottom-up mobile system protocols, it aims to influence a process of urban regeneration in marginalized neighborhoods. The case study is located in a peripheral area of the city of Morelia, Michoacán, México. Designing, exploring and testing a textile manufacturing artifact with a hybrid process of digital and analog technology, a performance installation that responds to the physical, social and human environment.
keywords Design, Emerging, Innovation, Social, Public
series SIGraDi
email
last changed 2021/07/16 11:53

_id sigradi2020_863
id sigradi2020_863
authors Jalkh, Heidi
year 2020
title Morpho-Active Materials: Fabricating auxetic structures with bioinspired behavior
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 863-869
summary This practice-led research lies at the intersection of design, craft, materials science, and biology. Inspired by the responsive mechanism of plant’s biological actuators, and Nature's outstanding capacity of attaining maximal performances while using minimum resources. This thesis explores how to achieve a higher level of integration between the generation of form and behavior with its materialization and fabrication.This research proposes to endow a conventional laminar elastic material with unconventional behavior. Taking as inspiration plants biological actuators, which allows them to sense and adapt according to different environmental stimuli. We explored, developed, and fabricated a range of cellular structures (and in particular auxetics) that have out of the plane shape morphing capabilities, displaying a distinctive behavior in response to a design pattern (spatial cell arrangement) and an actuating force.The final design is a material/geometry-based actuator with reversible behavior, an active material with integrated tunable and responsive capacity which provides the capabilities to sense, adapt and respond to external stimuli within the structure of the material.
keywords Bioinspired, Auxetic Materials, Shape-shifting, Active matter, Soft matter
series SIGraDi
email
last changed 2021/07/16 11:53

_id caadria2020_180
id caadria2020_180
authors Jensen, Mads Brath and Das, Avishek
year 2020
title Technologies and Techniques for Collaborative Robotics in Architecture - - establishing a framework for human-robotic design exploration
doi https://doi.org/10.52842/conf.caadria.2020.2.293
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 293-302
summary This study investigates the technological and methodological challenges in establishing an indeterministic approach to robotic fabrication that allows for a collaborative and creative design/fabrication process. The research objective enquires into how robotic processes in architecture can move from deterministic fabrication processes towards explorative and indeterministic design processes. To address this research objective, the study specifically explores how an architect and a robot can engage in a process of co-creation and co-evolution, that is enabled by a collaborative robotic arm equipped with an electric gripper and a web camera. Through a case-based experiment, of designing and constructing an adjustable façade system consisting of parallel wood lamellas, designer and robotic system co-create by means of interactive processes. The study will present and discuss the technological implementations used to construct the interactive robotic-based design process, with emphasis on the integration of visual analysis features in Grasshopper and on the benefits of establishing a state machine for interactive and creative robotic control in architecture.
keywords Design cognition; Digital fabrication ; Construction; Human-computer interaction
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_465421 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002