CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2020_100
id caadria2020_100
authors Hershcovich, Cheli, van Hout, RENÉ, Rinsky, Vladislav, Laufer, Michael and Grobman, Yasha J.
year 2020
title Insulating with Geometry - Employing Cellular Geometry to Increase the Thermal Performance of Building Facades
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 507-516
doi https://doi.org/10.52842/conf.caadria.2020.1.507
summary This paper presents the current stage of a study examining the potential of complex geometry concrete tiles to improve thermal performance in building envelopes. This stage focused on developing tile geometries and testing them using physical and digital CFD (Computational Fluid Dynamics) simulations. Tiles were developed taking two approaches: (i) developing variation from basic geometries (triangle, square, circle and trapezoid) and (ii) learning from natural envelopes. Following successful validation of experimental and numerical data, the designed tiles were tested using a digital simulation (Star-CCM+). The results show that for the examined configuration (flow perpendicular to the surface), a significant reduction of heat transfer rate occurs in most of the tested tiles. Furthermore, geometries that achieved the same thermal performance as the base-line flat tile saved up to 38 percent of the material.
keywords Complex Geometry; Microclimate; CFD
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2020_281
id caadria2020_281
authors Abdelmohsen, Sherif and Hassab, Ahmed
year 2020
title A Computational Approach for the Mass Customization of Materially Informed Double Curved A Computational Approach for the Mass Customization of Materially Informed Double Curved Façade Panels
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 163-172
doi https://doi.org/10.52842/conf.caadria.2020.1.163
summary Despite recent approaches to enable the mass customization of double curved façade panels, there still exist challenges including waste reduction, accuracy, surface continuity, economic feasibility, and workflow disintegration. This paper proposes a computational approach for the design and fabrication of materially informed double curved façade panels with complex geometry. This approach proposes an optimized workflow to generate customizable double curved panels with complex geometry and different material properties, and optimize fabrication workflow for waste reduction. This workflow is applied to four different fabrication techniques: (1) vacuum forming, (2) clay extrusion, (3) sectioning, and (4) tessellation. Four experiments are introduced to apply surface rationalization and optimization using Rhino and Grasshopper scripting. Upon simulating each of the four design-to-fabrication techniques through different iterations, the experiment results demonstrated how the proposed workflows produced optimized surfaces with higher levels of accuracy and reduced waste material, customized per type of material and surface complexity.
keywords Digital fabrication; Double curved facades; Mass customization; Design-to-fabrication
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2020_870
id sigradi2020_870
authors Castro-Arenas, Cristhian; Miralles, Monica
year 2020
title Bioinformed Design of Dynamic Tensegrity Units
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 870-877
summary This paper presents the bioinformed design of tensegrities based in the application of configurative logics of biotensegrities. Its purpose is to accomplish dynamic tensegrities, potentially applicable in the design of innovative technological devices. This article presents the analysis and design of three types of models: a) the Universal Tensegrity Joints introduced by Fuller, b) the Abstract Dynamic Units, and c) Bioinformed Dynamic Units. The methodology is based on simulating movements with parametric modeling in Rhinoceros software, with the usage of Grasshopper and Kangaroo plugins. Thus, a first classification of UDAs and the first phase of UDB models for leg and shoulder were obtained.
keywords Tensegrity, Biotensegrity, Bioinformed, Parametric, Design
series SIGraDi
email
last changed 2021/07/16 11:53

_id ijac202220109
id ijac202220109
authors Ortner, F. Peter; Jing Zhi Tay
year 2022
title Resilient by design: Informing pandemic-safe building redesign with computational models of resident congestion
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 129–144
summary This paper describes a computational design-support tool created in response to safe-distancing measures enforced during the COVID-19 pandemic. The tool was developed for a specific use case: understanding congestion in crowded migrant worker dormitories that experienced high rates of COVID-19 transmission in 2020. Building from agent-based and network-based computational simulations, the tool presents a hybrid method for simulating building resident movements based on known or pre-determined schedules and likely itineraries. This hybrid method affords the design tool a novel approach to simultaneous exploration of spatial and temporal design scenarios. The paper demonstrates the use of the tool on an anonymised case study of a high-density migrant worker dormitory, comparing results from a baseline configuration against design variations that modify dormitory physical configuration and schedule. Comparisons between the design scenarios provide evidence for reflections on pandemic-resilient design and operation strategies for dor- mitories. A conclusions section considers the extent to which the model and case study results are applicable to other dense institutional buildings and describes the paper’s contributions to general understanding of configurational and operational aspects of resilience in the built environment.
keywords Design for resilience, evidence-based design, design support, agent-based model, schedule-based model, network analysis
series journal
last changed 2024/04/17 14:29

_id acadia20_220p
id acadia20_220p
authors Rieger, Uwe; Liu, Yinan
year 2020
title LightWing II
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 220-225
summary LightWing II is an immersive XR installation that explores hybrid design strategies equally addressing physical and digital design parameters. The interactive project links a kinetic structure with dynamic digital information in the form of 3D projected imagery and spatial sound. A key component of the project was the development of a new rendering principle that allows the accurate projection of stereoscopic images on a moving target screen. Using simple red/cyan cardboard glasses, the system expands the applications of contemporary AR headsets beyond an isolated viewing towards a communal multi-viewer event. LightWing`s construction consists of thin flexible carbon fibre rods used to tension an almost invisible mesh screen. The structure is asymmetrically balanced on a single pin joint and monitored by an IMU. A light touch sets the delicate wing-like object into a rotational oscillation. As a ‘hands-on’ experience, LightWing II creates a mysterious sensation of tactile data and enables the user to navigate through holographic narratives assembled in four scenes, including the interaction with swarms of three winged creatures, being immersed in a silky bubble, and a journey through a velvet wormhole. The user interface is dissolved through the direct linkage between the physical construction and the dynamic digital content. The project was developed at the arc/sec Lab at the University of Auckland. The Lab explores user responsive constructions where dynamic properties of the virtual world influence the material world and vice versa. The Lab’s vision is to re-connect the intangible computer world to the multisensory qualities of architecture and urban spaces. With a focus on intuitive forms of user interaction, the arc/sec Lab uses large-scale prototypes and installations as the driving method for both the development and the demonstration of new cyber-physical design principles.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_66
id acadia20_66
authors Aviv, Dorit; Wang, Zherui; Meggers, Forrest; Ida, Aletheia
year 2020
title Surface Generation of Radiatively-Cooled Building Skin for Desert Climate
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 66-73.
doi https://doi.org/10.52842/conf.acadia.2020.1.066
summary A radiatively cooled translucent building skin is developed for desert climates, constructed out of pockets of high heat-capacity liquids. The liquids are contained by a wavelength-selective membrane enclosure, which is transmissive in the infrared range of electromagnetic radiation but reflective in the shortwave range, and therefore prevents overheating from solar radiation and at the same time allows for passive cooling through exposure of its thermal mass to the desert sky. To assess the relationship between the form and performance of this envelope design, we develop a feedback loop between computational simulations, analytical models, and physical tests. We conduct a series of simulations and bench-scale experiments to determine the thermal behavior of the proposed skin and its cooling potential. Several materials are considered for their thermal storage capacity. Hydrogel cast into membrane enclosures is tested in real climate conditions. Slurry phase change materials (PCM) are also considered for their additional heat storage capacity. Challenges of membrane welding patterns and nonuniform expansion of the membrane due to the weight of the enclosed liquid are examined in both digital simulations and physical experiments. A workflow is proposed between the radiation analysis based on climate data, the formfinding simulations of the elastic membrane under the liquid weight, and the thermal storage capacity of the overall skin.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2024_222
id ecaade2024_222
authors Bindreiter, Stefan; Sisman, Yosun; Forster, Julia
year 2024
title Visualise Energy Saving Potentials in Settlement Development: By linking transport and energy simulation models for municipal planning
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 79–88
doi https://doi.org/10.52842/conf.ecaade.2024.2.079
summary To achieve Sustainable Development Goals, in addition to the switch to sustainable energy sources and energy-efficient buildings, transport offers a major lever for reducing energy consumption and greenhouse gases. The increasing demand for emission-free mobility (e.g. through electromobility) but also heat pumps has a direct impact on the electricity consumption of buildings and settlements. It is still difficult to simulate the effects and interactions of different measures as sector coupling concepts require comprehensible tools for ex ante evaluation of planning measures at the community level and the linking of domain-specific models (energy, transport). Using the municipality of Bruck an der Leitha (Austria) as an example, a digital twin based on an open data model (Bednar et al., 2020) is created for the development of methods, which can be used to simulate measures to improve the settlement structure within the municipality. Forecast models for mobility (Schmaus, 2019; Ritz, 2019) and the building stock are developed or applied and linked via the open data model to be able to run through development scenarios and variants. The forecasting and visualisation options created in the project form the basis for the ex-ante evaluation of measures and policies on the way to a Positive-Energy-District. By identifying and collecting missing data, data gaps are filled for the simulation of precise models in the specific study area. A digital, interactive 3D model is created to examine the forecast results and the different scenarios.
keywords visualisation, decision support, sector coupling, holistic spatial energy models for municipal planning, (energy) saving potentials in settlement development
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia20_436
id acadia20_436
authors Chun Hin Fong, Jacky; Long Wun Poon, Adabelle; Sze Ngan, Wing; Hei Ho, Chung; Goepel, Garvin; Crolla, Kristof
year 2020
title Augmenting Craft with Mixed Reality
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 436-444.
doi https://doi.org/10.52842/conf.acadia.2020.1.436
summary This paper discusses novel methods for and advantages of integrating augmented reality (AR) and photogrammetry in hand clay-sculpting workflows. These techniques permit nontrained users to achieve higher precision during the sculpting process by holographically overlaying instructions from digital 3D source geometry on top of the sculpting material. By employing alternative notational systems in design implementation methods, the research positions itself in a postdigital context aimed at humanizing digital technologies. Throughout history, devices have been developed to increase production, such as Henry Dexter’s 1842 “Apparatus for Sculptors” for marble sculpting. Extrapolating from this, the workflow presented in this paper uses AR to overlay extracted information from 3D models directly onto the sculptor’s field of vision. This information can then become an AR-driven guidance system that assists the sculptor. Using the Microsoft HoloLens, holographic instructions are introduced in the production sequence, connecting the analog sculpture fabrication directly with a digital environment, thus augmenting the craftspeople’s agency. A series of AR-aided sculpting methods were developed and tested in a demonstrator case study project that created a small-scale clay copy of Henry Moore’s Sheep Piece (1971–1972). This paper demonstrates how user-friendly software and hardware tools have lowered the threshold for end users to develop new methods that straightforwardly facilitate and improve their crafts’ effectiveness and agency. This shows that the fusion of computational design technology and AR visualization technology can innovate a specific craft’s design and production workflow, opening the door for further application developments in more architecture-specific fabrication contexts.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_272
id caadria2020_272
authors Erhan, Halil, Abuzuraiq, Ahmed M., Zarei, Maryam, AlSalman, Osama, Woodbury, Robert and Dill, John
year 2020
title What do Design Data say About Your Model? - A Case Study on Reliability and Validity
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 557-567
doi https://doi.org/10.52842/conf.caadria.2020.1.557
summary Parametric modeling systems are widely used in architectural design. Their use for designing complex built environments raises important practical challenges when composed by multiple people with diverse interests and using mostly unverified computational modules. Through a case study, we investigate possible concerns identifiable from a real-world collaborative design setting and how such concerns can be revealed through interactive data visualizations of parametric models. We then present our approach for resolving these concerns using a design analytic workflow for examine their reliability and validity. We summarize the lessons learnt from the case study, such as the importance of an abundance of test cases, reproducible design instances, accessing and interacting with data during all phases of design, and seeking high cohesion and decoupling between design geometry and evaluation components. We suggest a systematic integration of design modeling and analytics for enhancing a reliable design decision-making.
keywords Model Reliability; Model Validity; Parametric Modeling; Design Analytics; Design Visualization
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_126
id caadria2020_126
authors Hsiao, Chi-Fu, Lee, Ching-Han, Chen, Chun-Yen and Chang, Teng-Wen
year 2020
title A Co-existing Interactive Approach to Digital Fabrication Workflow
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 105-114
doi https://doi.org/10.52842/conf.caadria.2020.1.105
summary In recent years, digital fabrication projects have explored how to best present complex spatial patterns. These patterns are generated by a series of function clusters and need to be separated into reasonable working sequences for workers. In the stage between design and fabrication, designers and workers typically spend considerable time communicating with each other and prototyping models in order to understand the complex geometry and joint methods of fabrication works. Through the potential of mixed reality technology, this paper proposes a novel form of co-existing interactive workflow that helps designers understand the morphing status of material composition and assists workers in achieving desired results. We establish this co-existing workflow mechanism as an interface between design and reality that includes a HoloLens display, a parametric algorithm, and gesture control identification. This paper challenges the flexibility between the virtual and reality and the interaction between precise parameters and natural gestures within an automation process.
keywords Co-existing interactive workflow; Digital fabrication; HoloLens; Digital twin; Prototype
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2020_407
id ecaade2020_407
authors Yalçinkaya, Sezgi and Delikanli, Burak
year 2020
title Variable Voxel Computing Method - Innovative Approaches to Reduce the Computing Load in Voxel-based Solid Modeling and New Representation Methods
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 663-671
doi https://doi.org/10.52842/conf.ecaade.2020.1.663
summary The concept of "voxel" refers to a volumetric element or volumetric pixel and corresponds to the smallest piece that can be computed in solid and complex model analysis. The voxel-based solid modeling commonly used by geometry-based CAD (Computer-Aided Design) applications. Whilst other geometry-based modeling methods, it uses pixels as the smallest unit instead of dots or vectors. However, the size of the data contained in the smallest unit causes problems such as computing load and representation inaccuracies. This study fundamentally aims to find a fast and effective method for voxel-based solid modeling. While doing that it presents a new visualization algorithm. During the research, the transformation of a geometric model into voxels, then the reproduction of these voxels, and finally, the representation method were practiced and compared. In this process, three complex models were developed and compared by their complexity, their voxelization time, and the amount of time that spend during the formation. As a result, the study proposes new representation methods for voxel-based solid modeling.
keywords Voxel-based Modeling; Solid Models; Representation Methods; Computing Load
series eCAADe
email
last changed 2022/06/07 07:57

_id cdrf2022_209
id cdrf2022_209
authors Yecheng Zhang, Qimin Zhang, Yuxuan Zhao, Yunjie Deng, Feiyang Liu, Hao Zheng
year 2022
title Artificial Intelligence Prediction of Urban Spatial Risk Factors from an Epidemic Perspective
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_18
summary From the epidemiological perspective, previous research methods of COVID-19 are generally based on classical statistical analysis. As a result, spatial information is often not used effectively. This paper uses image-based neural networks to explore the relationship between urban spatial risk and the distribution of infected populations, and the design of urban facilities. We take the Spatio-temporal data of people infected with new coronary pneumonia before February 28 in Wuhan in 2020 as the research object. We use kriging spatial interpolation technology and core density estimation technology to establish the epidemic heat distribution on fine grid units. We further examine the distribution of nine main spatial risk factors, including agencies, hospitals, park squares, sports fields, banks, hotels, Etc., which are tested for the significant positive correlation with the heat distribution of the epidemic. The weights of the spatial risk factors are used for training Generative Adversarial Network models, which predict the heat distribution of the outbreak in a given area. According to the trained model, optimizing the relevant environment design in urban areas to control risk factors effectively prevents and manages the epidemic from dispersing. The input image of the machine learning model is a city plan converted by public infrastructures, and the output image is a map of urban spatial risk factors in the given area.
series cdrf
email
last changed 2024/05/29 14:02

_id sigradi2022_246
id sigradi2022_246
authors Bustos Lopez, Gabriela; Aguirre, Erwin
year 2022
title Walking the Line: UX-XR Design Experiment for Ephemeral Installations in Pandemic Times
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 699–710
summary Throughout COVID 19 Pandemic since 2020, it was necessary to generate instructional strategies including digital platforms for creative processes in architecture. This article exposes an experience that integrates pedagogical, operational, and technical dimensions in architecture virtual teaching. A pedagogical methodology was designed and implemented, fusing User Experience (UX) and Extended Reality (XR) during the architectural design process in a virtual experimental studio. The use of UX-XR as a designing-reviewing strategy in architecture, positively impacted the creative experience of both students and reviewers by enriching the perception of the space and interactively simulating the user experience. A friendly, fun, and socially inclusive environment was generated for learning architecture using synthetic media and Multiuser Virtual Environments (MUVEs). The successful results of the students’ projects by phase are shown, revealing the significance of combining UX and XR, incorporating the metaverse as a canvas to review, recreate, interact, and assess architectural designs.
keywords User Experience (UX), Extended Reality (XR), Multiuser Virtual Environments (MUVE), Virtual Campus, Usability
series SIGraDi
email
last changed 2023/05/16 16:56

_id sigradi2020_886
id sigradi2020_886
authors Lima, Elton Cristovao da Silva; Matsunaga, Cristina; Mendes, Leticia Teixeira
year 2020
title Sartorius Pavilion – Biomimicry as a design methodology for a parametric pavilion for the Serpentine Gallery/England
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 886-893
summary In order to design an ephemeral pavilion located at the Serpentine Gallery (England), an experimental design approach was developed in this paper by using biomimicry strategies associated with parametric modeling. Exploring the solution-based methodology, the analysis of the sartorius muscle anatomic features such as rotation, flexion and long shape allowed inspiring the proposal of a Sartorius Pavilion which is the object of study. The experiment was implemented throughout a parametric visual script tool resulting in a model capable of rapidly and intuitively simulating shape variations, basic structural and material attributes by modifying a set of previously defined parameters.
keywords Biomimicry, Bio-inspired Architecture, Sartorius Muscle, Parametric Pavilion, Serpentine Gallery
series SIGraDi
email
last changed 2021/07/16 11:53

_id sigradi2020_81
id sigradi2020_81
authors Machado, Gabriela Pires; Freitas, Kamila Pacheco Louro; Sousa, Luísa Antunes de; Favre, Michelle Mayrink; Correa, Pedro Henrique Passos; Oliveira, Thais Gonçalves de; Calais, Victoria Mansur de
year 2020
title DIGITAL ARCHAEOLOGY, FORENSIC ARCHITECTURE AND INTERACTIVE MODELS AS TOOLS OF RECONSTITUTION OF HISTORICAL MEMORY: The Human Rights Memorial of Minas Gerais Project (Brazil)
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 81-88
summary This paper discusses how history, archaeology, and architecture can work together within restoration and interpretation of older buildings in a multidisciplinary and technologic way - especially in territorial contexts of human rights violations. In the last decades, a lot of softwares, tools, and interfaces have emerged with the possibility to connect hypermedia languages, simulating spatial narratives of cultural heritage in virtual reality. This paper addresses these new methodologies of representation of history and memory through projects and case studies of the Human Rights Memorial of Minas Gerais.
keywords Forensic Architecture, Informational model, Digital archeology, Human rights, Places of Memory
series SIGraDi
email
last changed 2021/07/16 11:48

_id sigradi2020_534
id sigradi2020_534
authors Mariano, Pedro Oscar Pizzetti; Fonseca, Raphaela Walger da; Pereira, Fernando Oscar Ruttkay; Pereira, Alice Theresinha Cybis
year 2020
title Autonomous parametric process for daylight simulation applied to the proposal of a daylighting of buildings performance tool
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 534-540
summary The openings features definition, considering the obstructions influence caused by the urban environment, are extremely relevant for the daylit buildings design. The complexity of the daylight phenomenon and the need to estimate its performance spread the use of parametric simulation and simulation programs. Thus, this article aims to create a parametric process, derived from a digital process, capable of simulating and registering the performance of daytime construction in different urban scenarios in an automated way. This process made it possible to generate a series of data capable of producing tools for understanding the phenomenon of natural daylight.
keywords Parametric process, Simulation, Daylighting, Building performance
series SIGraDi
email
last changed 2021/07/16 11:52

_id ijac202018305
id ijac202018305
authors McIntosh, Jacqueline; Bruno Marques and Robyn Harkness
year 2020
title Simulating impairment through virtual reality
source International Journal of Architectural Computing vol. 18 - no. 3, 284-295
summary Research on architectural technology for health care has rapidly increased in recent years; however, little research has been conducted on the use of virtual reality for simulating impairment. This exploratory research maps the experiences of people with impairments in the often-overlooked corridors and waiting rooms of an emergency department. It questions whether the experience of an impairment can be usefully simulated for empathetic design. While using participatory processes to develop a virtual reality simulation of waiting areas, this research applies three representative impairments and then surveys 30 architectural designers to find the emotional responses of the unimpaired to the design intervention. While this research is preliminary, it is particularly valuable for the comprehension of proposed designs during the early planning and design phases, without costly and time-consuming use of full participatory processes. It finds there is significant potential for the use of virtual reality as a technology to simulate the experiences of these spaces by individuals with impairment, enabling empathetic design, and offers direction for future research.
keywords Emergency department, virtual reality, architecture, participatory design, health care
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_331
id ecaade2020_331
authors Turhan, Gozde Damla, Varinlioglu, Guzden and Bengisu, Murat
year 2020
title Dynamic Relaxation Simulations of Bacterial Cellulose-based Tissues
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 61-66
doi https://doi.org/10.52842/conf.ecaade.2020.2.061
summary In this paper, a sample of a bacterial cellulose-based tissue is studied in terms of its tectonics by presenting a framework that proposes a transition from digital to physical in terms of design and fabrication. First, sample tissue is digitally modeled and optimized through dynamic relaxation of spring-particle systems by simulating bending behavior; secondly, the tissue is materialized in a form of a biocomposite out of plant cellulose as a fabric out of fiber network for reinforcement, and bacterial cellulose, as the membrane. As the last step, the results are discussed in terms of the deflection, tensile stress lines and bending moment. This framework anticipates a number of methodologies from design and biology, combined with digital fabrication technologies in new ways to change the processes, augment the quality of ideas and outcomes; thus, question the perception of making spaces for living.
keywords Structural optimization; dynamic relaxation; bacterial cellulose; biocomposite
series eCAADe
email
last changed 2022/06/07 07:58

_id ijac202018201
id ijac202018201
authors Mondor, Christine Ann and Nicolas Azel
year 2020
title Acting on the invisible: Computational tools and community action in the landscapes of air quality
source International Journal of Architectural Computing vol. 18 - no. 2, 108-119
summary This article proposes that designers and planners can better manage wicked problems by developing a strategic alignment of computational technology with a theory of change. Together with an understanding of the most effective places to intervene in a system, designers’ informed use of technology enables them to orchestrate community action and leverage large-scale environmental change. Aligning technology with a theory of change deepens the relevance of computational tools and suggests that technologies or tools that augment one’s ability to perceive, understand relevance, or prioritize raise the potential for action; technologies or tools that aggregate information on collective beliefs or actions help to build a community of concern; and technologies that elevate community capacity and create a sense of identity can contribute to the long-term transformation of values. Through a case study, this article demonstrates a nested approach to computation, which enhances public awareness and enables action in a small community which is trying to manage an extra-territorial problem of air quality. This article also proposes that while computational tools have extended the reach and effectiveness of advocacy, designers should continue to push for expanded application. By aggregating lessons learned from technological networks, such as the emerging clean air network described in this article, we can add another socio-ecological dimension to the practices of landscape and urbanism.
keywords Reactive landscapes, adaptive landscapes, computation, citizen science, embedded environments, computational technology, theory of change, community capacity, community identity, technology ecosystems
series journal
email
last changed 2020/11/02 13:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_510492 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002