CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id ecaade2020_290
id ecaade2020_290
authors Elesawy, Amr Alaaeldin, Signer, Mario, Seshadri, Bharath and Schlueter, Arno
year 2020
title Aerial Photogrammetry in Remote Locations - A workflow for using 3D point cloud data in building energy modeling
doi https://doi.org/10.52842/conf.ecaade.2020.1.723
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 723-732
summary Building energy modelling (BEM) results are highly affected by the surrounding environment, due to the impact of solar radiation on the site. Hence, modelling the context is a crucial step in the design process. This is challenging when access to the geometrical data of the built and natural environment is unavailable as in remote villages. The acquisition of accurate data through conventional surveying proves to be costly and time consuming, especially in areas with a steep and complex terrain. Photogrammetry using drone-captured aerial images has emerged as an innovative solution to facilitate surveying and modeling. Nevertheless, the workflow of translating the photogrammetry output from data points to surfaces readable by BEM tools proves to be tedious and unclear. This paper presents a streamlined and reproducible approach for constructing accurate building models from photogrammetric data points to use for architectural design and energy analysis in early design stage projects.
keywords Building Energy Modeling; Photogrammetry; 3D Point Clouds; Low-energy architecture; Multidisciplinary design; Education
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia20_120
id acadia20_120
authors Barsan-Pipu, Claudiu; Sleiman, Nathalie; Moldovan, Theodor
year 2020
title Affective Computing for Generating Virtual Procedural Environments Using Game Technologies
doi https://doi.org/10.52842/conf.acadia.2020.2.120
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 120-129.
summary Architects have long sought to create spaces that can relate to or even induce specific emotional conditions in their users, such as states of relaxation or engagement. Dynamic or calming qualities were given to these spaces by controlling form, perspective, lighting, color, and materiality. The actual impact of these complex design decisions has been challenging to assess, from both quantitative and qualitative standpoints, because neural empathic responses, defined in this paper by feature indexes (FIs) and mind indexes (MIs), are highly subjective experiences. Recent advances in the fields of virtual procedural environments (VPEs) and virtual reality (VR), supported by powerful game engine (GE) technologies, provide computational designers with a new set of design instruments that, when combined with brain-computing interfacing (BCI) and eye-tracking (E-T) hardware, can be used to assess complex empathic reactions. As the COVID-19 health crisis showed, virtual social interaction becomes increasingly relevant, and the social catalytic potential of VPEs can open new design possibilities. The research presented in this paper introduces the cyber-physical design of such an affective computing system. It focuses on how relevant empathic data can be acquired in real time by exposing subjects within a dynamic VR-based VPE and assessing their emotional responses while controlling the actual generative parameters via a live feedback loop. A combination of VR, BCI, and E-T solutions integrated within a GE is proposed and discussed. By using a VPE inside a BCI system that can be accurately correlated with E-T, this paper proposes to identify potential morphological and lighting factors that either alone or combined can have an empathic effect expressed by the relevant responses of the MIs.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_209
id caadria2020_209
authors Bissoonauth, Chitraj, Fischer, Thomas and Herr, Christiane M.
year 2020
title An Ethnographic Enquiry into Digital Design Tool Making
doi https://doi.org/10.52842/conf.caadria.2020.2.213
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
summary This paper presents an ethnographic pilot study into the design and application of digital design tools in a leading Shanghai-based architecture and engineering firm. From a participant observer's point of view, we employ qualitative research methods to enquire the conditions and experiences entailed in day-to-day collaborative activities in conjunction with the custom-development of digital design tools in advanced practice. The described initial ethnographic enquiry lasted for six weeks. While previous studies tended to favour post-rationalised and outcome-focused reports into toolmaking for design, we observe through participant observation that daily collaboration in practice is multi-faceted and overwhelmingly more complex. This paper further portrays and reflects on the concomitant opportunities and challenges of participant observation as a research method that can bridge academia and practice. We argue that, in order to appreciate and to inform digital design toolmaking practices, it is essential to recognise the richness of practice, in and of itself.
keywords digital design toolmaking; custom-developed tools; collaborative processes; ethnography; participant observation
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2020_264
id ecaade2020_264
authors Nicholas, Paul, Rossi, Gabriella, Papadopoulou, Iliana, Tamke, Martin, Aalund Brandt, Nikolaj and Jessen Hansen, Leif
year 2020
title Precision Partner - Enhancing GFRC craftsmanship with industry 4.0 factory-floor feedback
doi https://doi.org/10.52842/conf.ecaade.2020.2.631
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 631-640
summary This paper presents a novel human-machine collaborative approach to automatic quality-control of Glass-Fiber Reinforced Concrete (GFRC) molds directly on the factory floor. The framework introduces Industry 4.0 technologies to enhance the ability of skilled craftsmen to make molds through the provision of horizontal feedback regarding dimensional tolerances. Where digital tools are seldom used in the fabrication of GFRC molds, and expert craftsmen are not digital experts, our implementation of automated registration and feedback processes enables craftsmen to be integrated into and gain value from the digital production chain. In this paper, we describe the in-progress framework, Precision Partner, which connects 3d scanning and point cloud registration of geometrically complex and varied one off elements to factory floor dimensional feedback. We firstly introduce the production context of GFRC molds, as well as industry standards for production feedback. We then detail our methods, and report the results of a case study that tests the framework on the case of a balcony element.
keywords 3d Scanning; GFRC; Feedback; Automation; Human in the loop; Digital Chain
series eCAADe
email
last changed 2022/06/07 07:58

_id artificial_intellicence2019_31
id artificial_intellicence2019_31
authors Patrik Schumacher and Xuexin Duan
year 2020
title An Architecture for Cyborg Super-Society
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_3
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper embraces the future-open, anti-humanist sensibility of cyborgism from a societal perspective and locates the origin of the ongoing historical transformation of human identities and ways of life in the technology-induced transformation of societal communication dynamics. The evolution of language, and later of writing systems, is identified as crucial empowering engines of human productive cooperation and cultural evolution. Equally crucial for collective human selftransformation is the ever-evolving construction of artificial environments. Built environments are as much a human universal as language and all societal evolution depends on them as frames within which an increasingly complex social order can emerge and evolve. They constitute an indispensable material substrate of societal evolution. These built environments do not only function as physical ordering channels but also operate as information-rich spatio-visual languages, as a form of writing. This insight opens up the project of architectural semiology as task to radically upgrade the communicative capacity of the built environment via deliberate design efforts that understand the design of built environments primarily as the design of an eloquent text formulated by an expressive architectural language. The paper ends with a critical description of a recent academic design research project illustrating how such a semiological project can be conceived. Extrapolating from this leads the authors to speculate about a potentially far-reaching, new medium of communication and means of societal integration, facilitating a ‘cyborg super-society’.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id caadria2020_384
id caadria2020_384
authors Patt, Trevor Ryan
year 2020
title Spectral Clustering for Urban Networks
doi https://doi.org/10.52842/conf.caadria.2020.2.091
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 91-100
summary As planetary urbanization accelerates, the significance of developing better methods for analyzing and making sense of complex urban networks also increases. The complexity and heterogeneity of contemporary urban space poses a challenge to conventional descriptive tools. In recent years, the emergence of urban network analysis and the widespread availability of GIS data has brought network analysis methods into the discussion of urban form. This paper describes a method for computationally identifying clusters within urban and other spatial networks using spectral analysis techniques. While spectral clustering has been employed in some limited urban studies, on large spatialized datasets (particularly in identifying land use from orthoimages), it has not yet been thoroughly studied in relation to the space of the urban network itself. We present the construction of a weighted graph Laplacian matrix representation of the network and the processing of the network by eigen decomposition and subsequent clustering of eigenvalues in 4d-space.In this implementation, the algorithm computes a cross-comparison for different numbers of clusters and recommends the best option based on either the 'elbow method,' or by "eigen gap" criteria. The results of the clustering operation are immediately visualized on the original map and can also be validated numerically according to a selection of cluster metrics. Cohesion and separation values are calculated simultaneously for all nodes. After presenting these, the paper also expands on the 'silhouette' value, which is a composite measure that seems especially suited to urban network clustering.This research is undertaken with the aim of informing the design process and so the visualization of results within the active 3d model is essential. Within the paper, we illustrate the process as applied to formal grids and also historic, vernacular urban fabric; first on small, extract urban fragments and then over an entire city networks to indicate the scalability.
keywords Urban morphology; network analysis; spectral clustering; computation
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_198
id acadia20_198
authors Sinke Baranovskaya, Yuliya; Tamke, Martin; Ramsgaard Thomsen, Mette
year 2020
title Simulation and Calibration of Graded Knitted Membranes
doi https://doi.org/10.52842/conf.acadia.2020.2.198
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 198-207.
summary The grading of knit changes its geometrical performance and steers membrane expansion. However, knit possesses challenges of material predictability and digital simulation, due to its multiscalar complexity and anisotropic properties. Taking as a challenge the lack of digital solutions incorporating CNC-knit performance into the design model, this paper presents a novel approach for the design-integrated simulation of graded knit, informed by an empirical dataset analysis in combination with genetic optimization algorithms. Here the simulation design tool reflects the differences of industrially knitted textile panel behavior through digital mesh grading. Diversified fabric stiffness is achieved by intertwining the yarn into variegated stitch types that steer the textile expansion under load. These are represented digitally as zoned quad meshes with each segment assigned a stiffness value. Mesh stiffness values are optimized by minimizing the distance between the point clouds and the digital mesh, which are documented through deviation colored maps. This work concludes that design properties—pattern topology, stitch ratio, pattern density—play an important role in textile panel performance under load. Stiffness values derived from the optimization are higher for shallower designs and lower for the deeper cones.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_130p
id acadia20_130p
authors Swingle, Tyler; Zampini, Davide; Clifford, Brandon
year 2020
title Patty & Jan
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 130-135
summary The construction of architecture relies on an orchestra of moving parts and components throughout the process. These components are designed for the primary loads of the ultimate resting positions, but must also accommodate for secondary loads that occur during the assembly process. Safety, budget, and timing are the most influential factors in conducting the orchestra of architectural construction and typically set the tempo. Patty & Jan explore the curious and playful possibilities of secondary loads such as movement, momentum, and impact. This impractical assembly is not intended to negate practical considerations, but to elevate the field of construction above problem-solving. Patty & Jan builds upon previous research into moving massive masonry elements with little energy by controlling the center of mass (CoM) via physical computation and innovative concrete technologies such as proprietary chemical admixtures and special lightweight additions to entrain air as well as impart high fluidity. The resulting densities of the two concrete mixtures range from one-third the density to double the density of conventional concrete. Patty & Jan contributes to this ongoing research by incorporating the fourth dimension into the assembly process. Patty & Jan are a partnership. They have a reciprocal relationship with one another that ensures one cannot assemble without the other. Beginning with Patty and Jan at a pre-determined distance apart, a weighted tool is removed from Patty to alter the CoM and create a righting moment. Rotating along the riding surface, Patty over rotates to collide with Jan and strikes a resounding echo. The controlled impact triggers Jan first to rotate backward, rebound off its braking surface, and then counter-rotate towards Patty. The two meet along their assembly surfaces in the middle and slip effortlessly into their final assembled position. The resulting performance of Patty & Jan is an embedded intelligence of a theatrical assembly between two massive concrete masonry units (MCMU) through their momentum. Patty & Jan demonstrate the ability to predict the inherent movements and autonomous assemblies of MCMUs. It extends the potential of assembly methods to be social generators such as spectacles or performances. This research is a foundation for thinking about more extensive and more complex construction choreographies that engage material as well as human bodies in the building of architecture.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2020_398
id caadria2020_398
authors Tseng, Li-Min and Hou, June-Hao
year 2020
title Representation of Sound in 3D
doi https://doi.org/10.52842/conf.caadria.2020.1.609
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 609-618
summary This study is based on Chladni figures and tries to spatially extend its representation of sound. The current Chladni figures only see parts of the sound. There should be more spatial representation of sounds because they are transmitted in space. This study explores how to capture and reconstruct invisible sound information to create three-dimensional forms. A series of steps are taken to record Chladni figures of different frequencies and decibels. Pure Data is used to generate sounds. The Chladni figures are captured in Grasshopper and converted into point clouds. These point clouds are processed by using different algorithms to produce layers of superimposed state from which 3D forms of sound can be generated and fabricated. Through the proposed methods of processing and representation, sound not only stays at the level of hearing, but can also be seen, touched, and reinterpreted spatially. With the spatial forms of sound, viewers no longer perceive sound through single but multiple states. This can help us comprehend sound in a vast variety of ways.
keywords Sound visualization; Form-finding; Spatial-temporal; Chladni figures; Cymatics
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2020_120
id ecaade2020_120
authors Ishikawa, Daichi, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title A Mixed Reality Coordinate System for Multiple HMD Users Manipulating Real-time Point Cloud Objects - Towards virtual and interactive 3D synchronous sharing of physical objects in teleconference during design study
doi https://doi.org/10.52842/conf.ecaade.2020.1.197
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 197-206
summary Teleconferences without travel costs are useful for building a consensus in design. However, conventional teleconferencing using computer displays and web cameras is well known to have performance problems due to the lack of co-presence feeling with remote participants and the difficulty in sharing three dimensional (3D) information intuitively. This research proposes a method to share the mixed reality (MR) coordinate system for multiple head-mounted display (HMD) users manipulating real-time point cloud objects for the virtual and interactive 3D synchronous sharing in teleconferences. In our proposed method, the reference point of the virtual world coordinate system called world anchor and local coordinates of segmented point cloud objects in real-time are shared among HMDs via a server PC to share the same MR coordinate system. Using this method, the result of moving and rotating manipulation using hand gestures for segmented point cloud objects by an HMD user are reflected in the other HMD users. We developed a prototype system and evaluated the performance of the system when multiple users used this system. Future works include adapting this system to multiple RGB-D cameras and the internet environment.
keywords Mixed reality coordinate system; Real-time point clouds; Multiple User Interaction; Teleconference; 3D Synchronous Physical Object Sharing
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia20_142p
id acadia20_142p
authors Kilian, Axel
year 2020
title The Flexing Room
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 142-147
summary Robotics has been largely confined to the object category with fewer examples at the scale of buildings. Robotic buildings present unique challenges in communicating intent to the enclosed user. Precedent work in architectural robotics explored the performative dimension, the playful and interactive qualities, and the cognitive challenges of AI systems interacting with people in architecture. The Flexing Room robotic skeleton was installed at MIT at its full designed height for the first time and tested for two weeks in the summer of 2019. The approximately 13-foot-tall structure is comprised of 36 pneumatic actuators and an active bend fiberglass structure. The full height allowed for a wide range of postures the structure could take. Acoustic monitoring through Piezo pickup mics was added that allowed for basic rhythmic responses of the structure to people tapping or otherwise triggering the vibration sensors. Data streams were collected synchronously from Kinect skeleton tracking, piezo pickup mics, camera streams, and posture data. The emphasis in this test period was first to establish reliable hardware operations at full scale and second to record correlated data streams of the sensors installed in the structure together with the actuation triggers and the human poses of the inhabitant. The full-scale installation of hardware was successful and proved the feasibility of the structural and actuation approach previously tested on a one-level setup. The range of postures was increased and more transparent for the occupant. The perception of the structure as space was also improved as the system reached regular ceiling height and formed a clearer architectural scale enclosure. The ambition of communicating through architectural postures has not been achieved yet, but promising directions emerged from the test and data collection
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2020_267
id ecaade2020_267
authors Argin, Gorsev, Pak, Burak and Turkoglu, Handan
year 2020
title Through the Eyes of (Post-)Flâneurs - Altering rhythm and visual attention in public space in the era of smartphones
doi https://doi.org/10.52842/conf.ecaade.2020.1.239
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 239-248
summary In the last decade, rapid penetration of smartphones into our everyday life introduced a new kind of urban wanderer named as the 'post-flâneur'. By navigating through the virtual and physical space with a smartphone, and taking and sharing photographs, post-flâneur walks and experiences the city in novel ways. This paper aims to investigate the effects of smartphone use on the human-environment relationship by comparing post-flânerie with flânerie in public space with a focus on two key indicators: alteration of 1) the visual attention and 2) the walking rhythm. In this regard, ten postgraduate Architecture students are asked to perform flânerie and post-flânerie consecutively in the historical city center of Ghent with an eye-tracker and a smartphone. During the flânerie condition, they walked and experienced the city without using a smartphone. In the post-flânerie condition, they used a smartphone, took pictures and uploaded them to an application. By analyzing the eye-tracker (number and duration of fixations) and the smartphone (location data and geolocated photographs) data, altering rhythm and visual attention during the flânerie and post-flânerie were compared. Preliminary results indicate that flânerie and post-flânerie differ in terms of rhythm and visual attention. The average duration of fixations on the environment were significantly lower in the post-flânerie condition while the average walking rhythm was faster but impeded from time to time. In addition, post-flâneurs' visual attention was on the smartphone during a significant part of the stationary activities which point out to an altered state of public space appropriation. The findings are significant because they reveal the novel spatial appropriations and experiences of the (post)public space -particularly "the honeypot effect" which was more significant in the post-flânerie condition. These observations evoke questions on how designers can rethink public space as a hybrid construct integrating the virtual and the physical.
keywords post-flâneur; rhythm; visual attention; smartphone; eye-tracking
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_142
id ascaad2021_142
authors Bakir, Ramy; Sara Alsaadani, Sherif Abdelmohsen
year 2021
title Student Experiences of Online Design Education Post COVID-19: A Mixed Methods Study
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 142-155
summary This paper presents findings of a survey conducted to assess students’ experiences within the online instruction stage of their architectural education during the lockdown period caused by the COVID-19 pandemic between March and June 2020. The study was conducted in two departments of architecture in both Cairo branches of the Arab Academy for Science, Technology & Maritime Transport (AASTMT), Egypt, with special focus on courses involving a CAAD component. The objective of this exploratory study was to understand students’ learning experiences within the online period, and to investigate challenges facing architectural education. A mixed methods study was used, where a questionnaire-based survey was developed to gather qualitative and quantitative data based on the opinions of a sample of students from both departments. Findings focus on the qualitative component to describe students’ experiences, with quantitative data used for triangulation purposes. Results underline students’ positive learning experiences and challenges faced. Insights regarding digital tool preferences were also revealed. Findings are not only significant in understanding an important event that caused remote architectural education in Egypt but may also serve as an important stepping-stone towards the future of design education in light of newly-introduced disruptive online learning technologies made necessary in response to lockdowns worldwide
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2020_449
id sigradi2020_449
authors Becerra-Santacruz, Habid; Becerra-Santacruz, Axel
year 2020
title Mapping of emerging territorial phenomena at Micro Scale: Development of collaborative database as a base for Evidence-Based Design Strategies
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 449-454
summary This paper presents an active analysis and research approach for design workshops at the Faculty of Architecture at UMNSH. The proposed scheme for final year design studio demands students to participate in the confrontation of reality to understand first-hand through databases; the complex problems of contemporary society and its relationship with the habitat. In order to understand the diverse emergent phenomena of the city, a collaborative work is implemented for the development of a database, occupation maps and territorial dynamics on a micro scale. From the evidence supported by data, students articulate design strategies and specific territorial actions.
keywords Collaborative database, Evidence-based design strategies, Emergent phenomena mapping, Design pedagogy
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_198p
id acadia20_198p
authors Birkeland, Jennifer; Scelsa, Jonathan A.
year 2020
title Live L’oeil – Through the Looking Ceiling
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 198-201
summary Following the proliferation of linear perspective during the Renaissance, the hegemony of the vantage point was often problematically used to signify the patron’s dominance. During the mannerist era, we witnessed the creation of elaborate rooms, painted in architectural linear perspective establishing the illusionary space of faraway lands - a measure of optic imperialism wherein the conquests of the west played out in the domestic decoration of the elite later provided to the public as a societal spectacle in the form of the panorama. Within these architectural illusions, or Quadratura as they were named in Italy, lies the most notable and justifiable critique of design by vantage point, the question ‘which vantage point is privileged?’ History not surprisingly reveals that the typical vantage point was most problematically centered at one and three-quarter meters above the ground – coincident with five centimeters below the average height of a human European male. The design of architectural form through view or spatial image has arguably perpetuated this act of optic bias. This project addresses this problematic practice of design by vantage point by utilizing motion sensors to liberate the virtual space of a canonic example of quadrature from its confines within a singular vantage point. The authors digitally modeled the projective space of Andrea Pozzo’s vision for the Church of Sant’Ignazio di Loyola in Rome, scaled and fit to a gallery space outfitted with a canvas to inform a ceiling plane. Anamorphic images of the virtual heavenly space, as seen through the canvas ceiling picture plane, were created from the digital model and encoded to the individual moments in the room. Individuals who moved through the gallery were followed by the illusion of the heavenly space, creating a live l’oeil distortion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_830
id sigradi2020_830
authors Calvachi Arciniegas, Sandra; Bravo Montero, Juliana; Rosero Jurado, Juliana
year 2020
title Poetic of Pasaje Corazon de Jesús building´s memory, in the times of the telegraph: Prototype of Video Mapping
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 830-838
summary The project is about the elaboration of a Video Mapping projection over a facade´s model of the emblematic Pasaje Corazon de Jesús building, located in the city of Pasto, scale 1:15; since a conceptual point of view, through the narrative exploration created from the history of the own building itself in the period of time in which it worked as a telegraph and post office. This play proposes a new way to see and create the memory since the experiences with the purpose of communicates, keep and give value to the place´s historical memory and to its poetic.
keywords Video Mapping, Poetic, Memory, Telegraph, Pasaje Corazon de Jesús building
series SIGraDi
email
last changed 2021/07/16 11:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_266717 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002