CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 577

_id acadia20_360
id acadia20_360
authors Schneider, Maxie; Fransén Waldhör, Ebba; Denz, Paul-Rouven; Vongsingha, Puttakhun; Suwannapruk, Natchai; Sauer, Christiane
year 2020
title Adaptive Textile Facades Through the Integration of Shape Memory Alloy
doi https://doi.org/10.52842/conf.acadia.2020.1.360
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 360-370.
summary The R&D project ADAPTEX showcases a material-driven and computationally informed design approach to adaptive textile facades through the integration of shape memory alloy (SMA) as an actuator. The results exhibit thermally responsive and self-sufficient sun-shading solutions with innovative design potential that enhance the energy performance of the built environment. With regard to climate targets, an environmentally viable concept is proposed that reduces the energy required for climatization, is lightweight, and can function as a refurbishment system. Two concepts—ADAPTEX Wave and ADAPTEX Mesh—are being developed to be tested as full-scale demonstrators for facade deployment by an interdisciplinary team from architecture, textile design, facade engineering, and material research. The two concepts follow a material-driven, low-complexity design strategy and differ in type of kinetic movement, textile construction, integration of the SMA, reset force, and scale of permeability. In this paper, we describe the computational design process and tools to develop and design current and future prototypes and demonstrators, providing insights on the challenges and potentials of developing textiles with integrated shape memory alloys for architectural applications.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_053
id ecaade2020_053
authors Ren, Yue, Chu, Jie and Zheng, Hao
year 2020
title Dynamic Symbiont - An Interactive Urban Design Method Combining Swarm Intelligence and Human Decisions
doi https://doi.org/10.52842/conf.ecaade.2020.1.383
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 383-392
summary Can a virtual city game be built by both the public and computer-based on real-site data? In the current process of deepening global connectivity, requirements for an effective urban design are no longer limited to functions or aesthetics, but a smart, dynamic complex with multi-interactions of data, group behaviours, and physical space. This paper introduces the logic of swarm intelligence and particle system for proposing a new urban design methodology. The platforms range from simulations that quantify the impact of the disruptive interventions of city activities to communicable collaboration between different users in a UI system, which creates virtual connections between optimized urbanscape and users. In the design system, based on the context data, the computer firstly simulates and optimizes the existing 2D activity joints between the people and analyzed the current spatial connection nodes into certain design rules. Through optimal programming for spatial connection and data iterations, the activity connection structures in the second simulation are abstracted into a set of interactive 3D topographic. The final data-visualization results are presented as a co-building megacity in a virtual construction game. Users can choose the virtual building unit types and intuitively influence the future urbanscape decision through virtual construction.
keywords Swarm Intelligence; Particle System; Digital Simulation; Human-Machine Interaction; Data Visualization
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2020_403
id caadria2020_403
authors Ghandi, Mona
year 2020
title Reducing Energy Consumption through Cyber-Physical Adaptive Spaces and Occupants' Biosignals
doi https://doi.org/10.52842/conf.caadria.2020.2.121
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 121-130
summary The field of architecture has long embraced adaptive approaches to address issues of sustainability and efficiency. Building energy consumption accounts for about 40% of the total energy consumption in the U.S. This energy is mainly used for lighting, heating, cooling, and ventilation. Researches show that 30% of that energy is wasted. One of the main reasons for such high energy waste in the commercial (and even private) sectors is a generic assumption about the occupants' preferences. To fill this gap, the objective of this project is to optimize building energy retrofits by creating smart environments that autonomously respond to the occupants' comfort level using affective computing and adaptive systems. This adaptive approach will help optimizing energy consumption without sacrificing occupants' comfort through passive cooling and heating strategy, responding to occupants' preferences detected from their biological and neurological data. Progress towards achieving this goal will make building energy costs more affordable to the benefit of families and businesses and reduce energy waste.
keywords Human-Computer Interaction; Optimizing Energy Consumption; Sustainability + High Performance Built Environment; Adaptive and Interactive Architecture; Cyber-Physical Spaces, Affective Computing, Occupants’ Comfort and Well-Being
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2020_143
id ecaade2020_143
authors Ilyas, Sobia, Wang, Xinyue, Li, Wenting, Zhang, Zhuoqun, Wang, Tsung-Hsien and Peng, Chengzhi
year 2020
title Towards an Interactionist Model of Cognizant Architecture - A sentient maze built with swarm intelligence
doi https://doi.org/10.52842/conf.ecaade.2020.2.201
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 201-208
summary Cognizant Architecture is a term used to define sentient and smart structures broadly. In this paper, an 'Interactionist' model of cognizant architecture is proposed as a method of investigating the development process by inverting the conventional concept of maze design. The proposed 'Cognizant Maze' aims to achieve user-architecture micro-interactions through delighting the users, presenting a physical activity equally attractive to kids and adults alike, and activating mind-enticing visual effects. Like many previous innovations, nature is what inspires us in the maze-making process. In modelling the cognizant maze, we develop the concept and workflow of prototyping a form of swarm intelligence. We are particularly interested in exploring how simulated behaviours of swarm intelligence can be manifested in a maze environment for micro-interactions to take place. Combining parametric modelling and Arduino-based physical computing, our current interactive prototyping shows how the maze and its users can 'think, act and play' with each other, hence achieving an interactionist model of cognizant architecture. We reflect that the lessons learned from the Cognizant Maze experiment may lead to further development of cognizant architecture as a propagation of swarm intelligence through multi-layered micro-interactions.
keywords swarm intelligence; maze design; Micro-interactions; interactive prototyping; cognizant architecture
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2020_261
id caadria2020_261
authors Kimm, Geoff and Burry, Mark
year 2020
title Encouraging Community Participation in Design Decision-making through Reactive Scripting - a general framework tested in the smart villages context
doi https://doi.org/10.52842/conf.caadria.2020.2.051
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 51-60
summary In governmental decision-making, centralised experts spending a society's resources benefit from the guidance of community participation, yet the most effective participation by individuals distributed throughout a community often relies on expert guidance. This co-dependency of centralised and distributed knowledge is a critical weakness in contexts, such as developing rural communities, in which opportunities for in-field expert engagement are limited. This paper proposes a novel computational framework to break this deadlock by taking into the field responsive expertise digitally encapsulated within accessible built environment simulations. The framework is predicated in reactive scripting for design apps that invite a citizen user to progress a model towards their ideal design by prompts that highlight exceptional, contradictory, mutually exclusive, or simply underwhelming outcomes or branching decisions. The app simulations provide a gamified context of play in which goals are not prescriptively encoded but instead arise out of the social and community context. The detailed framework, presented together with a proof of concept smart villages app that is described along with an integration and feasibility test with positive results, provides a model for better participatory decision-making outcomes in the face of limited availability of expertise.
keywords community participation; built environment simulation; gamification; reactive scripting; smart cities and villages
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2020_586
id sigradi2020_586
authors Perelli Soto, Bruno; Soza Ruiz, Pedro; Tapia Zarricueta, Ricardo
year 2020
title Towards the development of Smart Buildings: A Lowcost IoT Healthcare Management Proposal in Times of a World Pandemic
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 586-593
summary This research addresses the impact that technologies, particularly the Internet of Things, have when facing - directly or indirectly - the current panorama of a pandemic due to COVID-19. First, we review the literature and propose a context that allows for efficient clarification regarding two concerns: where should we insert this project? What are the implications and scope of such a decision? Secondly, we present experiences of implementation of IoT prototypes, which – in context - consider the education of the population of an apartment building, the mitigation and detection of COVID-19 symptoms, and the ability to obtain data from these experiences.
keywords COVID-19, IoT, Design, Smart buildings, Lockdown
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_354
id caadria2020_354
authors Tomarchio, Ludovica, He, Peijun, Herthogs, Pieter and Tuncer, Bige
year 2020
title Cultural-Smart City: Establishing New Data-informed Practices to Plan Culture in Cities
doi https://doi.org/10.52842/conf.caadria.2020.2.081
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 81-90
summary The idea of the Creative City has encouraged planners to develop cultural policies to support creative economies, city branding, urban identity and urban quality. On the other side, the concept of Smart City introduced the possibility to create, collect and analyse data to inform decisions on cities. The two city agendas overlap in different ways, creating a Smart cultural city nexus, that propose similar goals and mixed methodologies, like the possibility to inform planning processes with big data-based technologies. In line with this direction, we introduced conceptual and methodological tools: the first tool is the definition of Hybrid Art Spaces, the second tool is the Singapore Art Maps (SAM), which uses social media data to locate art venues in cities (Tomarchio et al. 2016); the third tool is the Social Media Art Model, which establishes a relationship between social media production and art venues features. While these tools have already shown interesting analytics outcomes (Tomarchio et al. 2016), it is important to validate their utility among practitioners and to set protocols of practices. This paper presents results from semi-structured interviews and a focus group, as a first step towards assessing the usefulness of our three tools for cultural planning practice.
keywords social media; art; cultural planning; urban planning
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia20_38
id acadia20_38
authors Mueller, Stephen
year 2020
title Irradiated Shade
doi https://doi.org/10.52842/conf.acadia.2020.1.038
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 38-46.
summary The paper details computational mapping and modeling techniques from an ongoing design research project titled Irradiated Shade, which endeavors to develop and calibrate a computational toolset to uncover, represent, and design for the unseen dangers of ultraviolet radiation, a growing yet underexplored threat to cities, buildings, and the bodies that inhabit them. While increased shade in public spaces has been advocated as a strategy for “mitigation [of] climate change” (Kapelos and Patterson 2014), it is not a panacea to the threat. Even in apparent shade, the body is still exposed to harmful, ambient, or “scattered” UVB radiation. The study region is a binational metroplex, a territory in which significant atmospheric pollution and the effects of climate change (reduced cloud cover and more “still days” of stagnant air) amplify the “scatter” of ultraviolet wavelengths and UV exposure within shade, which exacerbates urban conditions of shade as an “index of inequality” (Bloch 2019) and threatens public health. Exposure to indirect radiation correlates to the amount of sky visible from the position of an observer (Gies and Mackay 2004). The overall size of a shade structure, as well as the design of openings along its sides, can greatly impact the UV protection factor (UPF) (Turnbull and Parisi 2005). Shade, therefore, is more complex than ubiquitous urban and architectural “sun” and “shadow studies” are capable of representing, as such analyses flatten the three-dimensional nature of radiation exposure and are “blind” to the ultraviolet spectrum. “Safe shade” is contingent on the nuances of the surrounding built environment, and designers must be empowered to observe and respond to a wider context than current representational tools allow.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_222
id caadria2020_222
authors Sun, Chengyu and Hu, Wei
year 2020
title A Rapid Building Density Survey Method Based on Improved Unet
doi https://doi.org/10.52842/conf.caadria.2020.2.649
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 649-658
summary How to rapidly obtain building density information in a large range is a key problem for architecture and planning. This is because architectural design or urban planning is not isolated, and the environment of the building is influenced by the distribution of other buildings in a larger area. For areas where building density data are not readily available, the current methods to estimate building density are more or less inadequate. For example, the manual survey method is relatively slow and expensive, the traditional satellite image processing method is not very accurate or needs to purchase high-precision multispectral remote sensing image from satellite companies. Based on the deep neural network, this paper proposes a method to quickly extract large-scale building density information by using open satellite images platforms such as Baidu map, Google Earth, etc., and optimizes the application in the field of building and planning. Compared with the traditional method, it has the advantages of less time and money, higher precision, and can provide data support for architectural design and regional planning rapidly and conveniently.
keywords building density; rapidly and conveniently; neural network
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2022_102
id ascaad2022_102
authors Turki, Laila; Ben Saci, Abdelkader
year 2022
title Generative Design for a Sustainable Urban Morphology
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 434-449
summary The present work concerns the applications of generative design for sustainable urban fabric. This represents an iterative process that involves an algorithm for the generation of solar envelopes to satisfy solar and density constraints. We propose in this paper to explore a meta-universe of human-machine interaction. It aims to design urban forms that offer solar access. This being to minimize heating energy expenditure and provide solar well-being. We propose to study the impact of the solar strategy of building morphosis on energy exposure. It consists of determining the layout and shape of the constructions based on the shading cut-off time. This is a period of desirable solar access. We propose to define it as a balance between the solar irradiation received in winter and that received in summer. We rely on the concept of the solar envelope defined since the 1970s by Knowles and its many derivatives (Koubaa Turki & al., 2020). We propose a parametric model to generate solar envelopes at the scale of an urban block. The generative design makes it possible to create a digital model of the different density solutions by varying the solar access duration. The virtual environment created allows exploring urban morphologies resilient both to urban densification and better use of the context’s resources. The seasonal energy balance, between overexposure in summer and access to the sun in winter, allows reaching high energy and environmental efficiency of the buildings. We have developed an algorithm on Dynamo for the generation of the solar envelope by shading exchange. The program makes it possible to detect the boundaries of the parcels imported from Revit, establish the layout of the building, and generate the solar envelopes for each variation of the shading cut-off time. It also calculates the FAR1 and the FSI2 from the variation of the shading cut-off time for each parcel of the island. We compare the solutions generated according to the urban density coefficients and the solar access duration. Once the optimal solution has been determined, we export the results back into Revit environment to complete the BIM modelling for solar study. This article proposes a method for designing buildings and neighbourhoods in a virtual environment. The latter acts upstream of the design process and can be extended to the different phases of the building life cycle: detailed design, construction, and use.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ijac202018203
id ijac202018203
authors Beattie , Hamish; Daniel Brown and Sara Kindon
year 2020
title Solidarity through difference: Speculative participatory serious urban gaming (SPS-UG)
source International Journal of Architectural Computing vol. 18 - no. 2, 141-154
summary This article discusses the methodology and results of the Maslow’s Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long-term design engagement processes through a new approach called Speculative Participatory Serious Urban Gaming. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and collective understandings of sensitive topics and develop ideas for future action through ‘collective tinkering.
keywords Participatory design, urban design, social capital, serious games
series journal
email
last changed 2020/11/02 13:34

_id caadria2020_100
id caadria2020_100
authors Hershcovich, Cheli, van Hout, RENÉ, Rinsky, Vladislav, Laufer, Michael and Grobman, Yasha J.
year 2020
title Insulating with Geometry - Employing Cellular Geometry to Increase the Thermal Performance of Building Facades
doi https://doi.org/10.52842/conf.caadria.2020.1.507
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 507-516
summary This paper presents the current stage of a study examining the potential of complex geometry concrete tiles to improve thermal performance in building envelopes. This stage focused on developing tile geometries and testing them using physical and digital CFD (Computational Fluid Dynamics) simulations. Tiles were developed taking two approaches: (i) developing variation from basic geometries (triangle, square, circle and trapezoid) and (ii) learning from natural envelopes. Following successful validation of experimental and numerical data, the designed tiles were tested using a digital simulation (Star-CCM+). The results show that for the examined configuration (flow perpendicular to the surface), a significant reduction of heat transfer rate occurs in most of the tested tiles. Furthermore, geometries that achieved the same thermal performance as the base-line flat tile saved up to 38 percent of the material.
keywords Complex Geometry; Microclimate; CFD
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2020_222
id ecaade2020_222
authors Ikeno, Kazunosuke, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Automatic Generation of Horizontal Building Mask Images by Using a 3D Model with Aerial Photographs for Deep Learning
doi https://doi.org/10.52842/conf.ecaade.2020.2.271
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 271-278
summary Information extracted from aerial photographs is widely used in urban planning and design. An effective method for detecting buildings in aerial photographs is to use deep learning for understanding the current state of a target region. However, the building mask images used to train the deep learning model are manually generated in many cases. To solve this challenge, a method has been proposed for automatically generating mask images by using virtual reality 3D models for deep learning. Because normal virtual models do not have the realism of a photograph, it is difficult to obtain highly accurate detection results in the real world even if the images are used for deep learning training. Therefore, the objective of this research is to propose a method for automatically generating building mask images by using 3D models with textured aerial photographs for deep learning. The model trained on datasets generated by the proposed method could detect buildings in aerial photographs with an accuracy of IoU = 0.622. Work left for the future includes changing the size and type of mask images, training the model, and evaluating the accuracy of the trained model.
keywords Urban planning and design; Deep learning; Semantic segmentation; Mask image; Training data; Automatic design
series eCAADe
email
last changed 2022/06/07 07:50

_id 2f0b
authors Kurzweil, R.
year 2000
title The Age of Spiritual Machines: When Computers Exceed Human Intelligence
source Penguin Books, London
summary How much do we humans enjoy our current status as the most intelligent beings on earth? Enough to try to stop our own inventions from surpassing us in smarts? If so, we'd better pull the plug right now, because if Ray Kurzweil is right, we've only got until about 2020 before computers outpace the human brain in computational power. Kurzweil, artificial intelligence expert and author of The Age of Intelligent Machines, shows that technological evolution moves at an exponential pace. Further, he asserts, in a sort of swirling postulate, time speeds up as order increases, and vice versa. He calls this the "Law of Time and Chaos," and it means that although entropy is slowing the stream of time down for the universe overall, and thus vastly increasing the amount of time between major events, in the eddy of technological evolution the exact opposite is happening, and events will soon be coming faster and more furiously. This means that we'd better figure out how to deal with conscious machines as soon as possible--they'll soon not only be able to beat us at chess, they'll likely demand civil rights, and they may at last realize the very human dream of immortality. The Age of Spiritual Machines is compelling and accessible, and not necessarily best read from front to back--it's less heavily historical if you jump around (Kurzweil encourages this). Much of the content of the book lays the groundwork to justify Kurzweil's timeline, providing an engaging primer on the philosophical and technological ideas behind the study of consciousness. Instead of being a gee-whiz futurist manifesto, Spiritual Machines reads like a history of the future, without too much science fiction dystopianism. Instead, Kurzweil shows us the logical outgrowths of current trends, with all their attendant possibilities. This is the book we'll turn to when our computers
series other
last changed 2003/04/23 15:14

_id ecaade2020_235
id ecaade2020_235
authors Li, Bin, Guo, Weihong, schnabel, Marc Aurel and Zhang, Ziqi
year 2020
title Virtual Simulation of New Residential Buildings in Lingnan Using Vernacular Wisdom
doi https://doi.org/10.52842/conf.ecaade.2020.1.269
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 269-278
summary Every new idea has some sort of precedent or echoes from the past. It is the same for the new residential buildings in Lingnan, China. In Lingnan, the vernacular knowledge of building design has been established over thousands of years. Whether it is suitable for use today should be verified. In this research, virtual simulations are employed to arrive at an overall conclusion. Virtual simulations based on PHOENICS, ENVI_MET, CadnaA, and Ecotect software were separately used for analysing the case of new residential buildings located in Lingnan. The study analysed the wind, thermal, acoustic, and light environments, which are four aspects of these new residential buildings. According to the results of our research, the paper discussed ways to amend and improve the new residential buildings that sit within the overall spirit of the vernacular knowledge of Lingnan; thus, it helps to put the traditional knowledge into the current context. The vernacular knowledge from XS to XL scale contexts, such as Feng-shui, was verified as being suitable for use in Lingnan today.
keywords Virtual simulation; Vernacular wisdom; Residential building; Lingnan; Feng-shui
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2020_157
id ecaade2020_157
authors Vrouwe, Ivo, Dissaux, Thomas, Jancart, Sylvie and Stals, Adeline
year 2020
title Concept Learning Through Parametric Design - A learning situation design for parametric design in architectural studio education
doi https://doi.org/10.52842/conf.ecaade.2020.2.135
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 135-144
summary Over the past few decades, architectural practice and, consequently, the design studio have been increasingly challenged. Indeed, the development of digital tools and parametric design, in particular, has given rise to a new type of architectural knowledge. Among the IJAC publications over the past three years, we highlight the current diversity of vocabulary used to discuss this knowledge and develop why we focus our study on conceptual knowledge. We then report a learning situation through studio design education. This paper finally presents the steps developed to measure this knowledge and hypothesizes on the future work needed in order to have relevant quantitative results. The purpose of this paper is to observe the evolution of students' understanding when shifting from a traditional teacher-student relationship to an engaging learning environment, considering the specificities of parametric, and not to suggest a strict method to follow when learning parametric. This could guide teachers to adapt to their own situations.
keywords Pedagogy; Learning; Parametric Design; Form Study
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2020_203
id caadria2020_203
authors Xiao, Yahan, Chen, Sen, Ikeda, Yasushi and Hotta, Kensuke
year 2020
title Automatic Recognition and Segmentation of Architectural Elements from 2D Drawings by Convolutional Neural Network
doi https://doi.org/10.52842/conf.caadria.2020.1.843
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 843-852
summary The BIM modeling process is the most time-consuming aspect. This paper studies the possibility of applying the recognition and segmentation of architectural components by deep learning to assist automatic BIM modeling. The research has two parts: the first one is dataset preparing, that images with the labeled architectural components from an original CAD drawing are made for the network training, and second is training and testing, that a mature network which has been trained in hundreds of labeled images is used to make predictions. The utilization of the current study results is discussed and the optimization method as well.
keywords BIM; CAD drawings; Recognition and Segmentation; Convolutional Neural Network; Computer vision
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2020_133
id ecaade2020_133
authors Andrade Zandavali, Barbara, Paul Anderson, Joshua and Patel, Chetan
year 2020
title Embodied Learning through Fabrication Aware Design
doi https://doi.org/10.52842/conf.ecaade.2020.2.145
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 145-154
summary The contemporary culture of geometry-driven design stands as consequence of an institutionalised segregation between the fields of architecture, structure and construction. In turn, digital design methods that are both material and fabrication aware from the outset create space for uncertainty and the potential for embodied learning. Following this principle, this paper summarises the outcomes of a workshop developed to investigate the contribution of fabrication aware design methods in the production of a masonry block using both analogue and digital manufacturing. Students were to develop and investigate a design, through assembly techniques and configurations orientated around manual hot wire cutting, robotic tooling and three-dimensional printing. Outcomes were manufactured and compared regarding work precision, production time, material efficiency, cost and scalability. The analysis indicated that the most accurate results yielded from the robotic tooling system, and simultaneously exhibited the most efficient use of time, while the three-dimensional printer generated the least material waste, due to the nature of additive production. Fabrication aware design and comparative analysis enabled students to make more informed decisions while the use of rapid prototyping facilitated a relationship between digitalization and materiality allowing for a space in which uncertainty and reflection could be fostered. Reinforcing that fabrication aware design methods can unify the field and provide guidance to designers over multi-lateral aspects of a project.
keywords Fabrication-Aware Design; Rapid Prototyping; Embodiment
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_830729 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002