CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 652

_id sigradi2020_392
id sigradi2020_392
authors Fialho, Beatriz Campos; Codinhoto, Ricardo; Fabricio, Márcio Minto
year 2020
title BIM and IoT for the AEC Industry: A systematic literature mapping
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 392-399
summary The AEC industry has been facing a digital transformation for improving services involved in buildings lifecycle, fostered by two disruptive technologies: Building Information Modelling (BIM) and Internet of Things (IoT). However, the literature lacks discussions regarding applications and challenges of BIM and IoT systems in the AEC. This Systematic Literature Mapping addresses this gap through search, analysis, and classification of 75 journal article abstracts published between 2015 and 2019. An increase of articles over the period is observed, predominantly with technical and processual solutions for Construction and Operation and Maintenance. The interoperability of data is a key challenge to organizations.
keywords Building Information Modelling, Internet of Things, Integration, Network, Smart Cities
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_411
id ecaade2020_411
authors Muehlbauer, Manuel, Song, Andy and Burry, Jane
year 2020
title Smart Structures - A Generative Design Framework for Aesthetic Guidance in Structural Node Design - Application of Typogenetic Design for Custom-Optimisation of Structural Nodes
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-632
doi https://doi.org/10.52842/conf.ecaade.2020.1.623
summary Virtual prototypes enable performance simulation for building components. The presented research extended the application of generative design using virtual prototypes for interactive optimisation of structural nodes. User-interactivity contributed to the geometric definition of design spaces rather than the final geometric outcome, enabling another stage of generative design for the micro-structure of the structural node. In this stage, the micro-structure inside the design space was generated using fixed topology. In contrast to common optimisation strategies, which converge towards a single optimal outcome, the presented design exploration process allowed the regular review of design solutions. User-based selection guided the evolutionary process of design space exploration applying Online Classification. Another guidance mechanism called Shape Comparison introduced an intelligent control system using an inital image input as design reference. In this way, aesthetic guidance enabled the combined evaluation of quantitative and qualitative criteria in the custom-optimisation of structural nodes. Interactive node design extended the potential for shape variation of custom-optimized structural nodes by addressing the geometric definition of design spaces for multi-scalar structural optimisation.
keywords generative design; evolutionary computation; interactive machine learning; typogenetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2020_354
id caadria2020_354
authors Tomarchio, Ludovica, He, Peijun, Herthogs, Pieter and Tuncer, Bige
year 2020
title Cultural-Smart City: Establishing New Data-informed Practices to Plan Culture in Cities
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 81-90
doi https://doi.org/10.52842/conf.caadria.2020.2.081
summary The idea of the Creative City has encouraged planners to develop cultural policies to support creative economies, city branding, urban identity and urban quality. On the other side, the concept of Smart City introduced the possibility to create, collect and analyse data to inform decisions on cities. The two city agendas overlap in different ways, creating a Smart cultural city nexus, that propose similar goals and mixed methodologies, like the possibility to inform planning processes with big data-based technologies. In line with this direction, we introduced conceptual and methodological tools: the first tool is the definition of Hybrid Art Spaces, the second tool is the Singapore Art Maps (SAM), which uses social media data to locate art venues in cities (Tomarchio et al. 2016); the third tool is the Social Media Art Model, which establishes a relationship between social media production and art venues features. While these tools have already shown interesting analytics outcomes (Tomarchio et al. 2016), it is important to validate their utility among practitioners and to set protocols of practices. This paper presents results from semi-structured interviews and a focus group, as a first step towards assessing the usefulness of our three tools for cultural planning practice.
keywords social media; art; cultural planning; urban planning
series CAADRIA
email
last changed 2022/06/07 07:58

_id cdrf2019_79
id cdrf2019_79
authors Guyi Yi1 and Ilaria Di Carlo
year 2020
title Cyborgian Approach of Eco-interaction Design Based on Machine Intelligence and Embodied Experience
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_8
summary The proliferation of digital technology has swelled the amount of time people spent in cyberspace and weakened our sensibility of the physical world. Human beings in this digital era are already cyborgs as the smart devices have become an integral part of our life. Imagining a future where human totally give up mobile phones and embrace nature is neither realistic nor reasonable. What we should aim to explore is the opportunities and capabilities of digital technology in terms of fighting against its own negative effect - cyber addiction, and working as a catalyst that re-embeds human into outdoor world. Cyborgian systems behave through embedded intelligence in the environment and discrete wearable devices for human. In this way, cyborgian approach enables designers to take advantages of digital technologies to achieve two objectives: one is to improve the quality of environment by enhancing our understanding of nonhuman creatures; the other is to encourage a proper level of human participation without disturbing eco-balance. Finally, this paper proposed a cyborgian eco-interaction design model which combines top-down and bottom-up logics and is organized by the Internet of Things, so as to provide a possible solution to the concern that technologies are isolating human and nature.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
doi https://doi.org/10.52842/conf.caadria.2020.1.873
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2020_261
id caadria2020_261
authors Kimm, Geoff and Burry, Mark
year 2020
title Encouraging Community Participation in Design Decision-making through Reactive Scripting - a general framework tested in the smart villages context
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 51-60
doi https://doi.org/10.52842/conf.caadria.2020.2.051
summary In governmental decision-making, centralised experts spending a society's resources benefit from the guidance of community participation, yet the most effective participation by individuals distributed throughout a community often relies on expert guidance. This co-dependency of centralised and distributed knowledge is a critical weakness in contexts, such as developing rural communities, in which opportunities for in-field expert engagement are limited. This paper proposes a novel computational framework to break this deadlock by taking into the field responsive expertise digitally encapsulated within accessible built environment simulations. The framework is predicated in reactive scripting for design apps that invite a citizen user to progress a model towards their ideal design by prompts that highlight exceptional, contradictory, mutually exclusive, or simply underwhelming outcomes or branching decisions. The app simulations provide a gamified context of play in which goals are not prescriptively encoded but instead arise out of the social and community context. The detailed framework, presented together with a proof of concept smart villages app that is described along with an integration and feasibility test with positive results, provides a model for better participatory decision-making outcomes in the face of limited availability of expertise.
keywords community participation; built environment simulation; gamification; reactive scripting; smart cities and villages
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_84
id acadia20_84
authors Kirova, Nikol; Markopoulou, Areti
year 2020
title Pedestrian Flow: Monitoring and Prediction
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 84-93.
doi https://doi.org/10.52842/conf.acadia.2020.1.084
summary The worldwide lockdowns during the first wave of the COVID-19 pandemic had an immense effect on the public space. The events brought up an opportunity to redesign mobility plans, streets, and sidewalks, making cities more resilient and adaptable. This paper builds on previous research of the authors that focused on the development of a graphene-based sensing material system applied to a smart pavement and utilized to obtain pedestrian spatiotemporal data. The necessary steps for gradual integration of the material system within the urban fabric are introduced as milestones toward predictive modeling and dynamic mobility reconfiguration. Based on the capacity of the smart pavement, the current research presents how data acquired through an agent-based pedestrian simulation is used to gain insight into mobility patterns. A range of maps representing pedestrian density, flow, and distancing are generated to visualize the simulated behavioral patterns. The methodology is used to identify areas with high density and, thus, high risk of transmitting airborne diseases. The insights gained are used to identify streets where additional space for pedestrians is needed to allow safe use of the public space. It is proposed that this is done by creating a dynamic mobility plan where temporal pedestrianization takes place at certain times of the day with minimal disruption of road traffic. Although this paper focuses mainly on the agent-based pedestrian simulation, the method can be used with real-time data acquired by the sensing material system for informed decision-making following otherwise-unpredictable pedestrian behavior. Finally, the simulated data is used within a predictive modeling framework to identify further steps for each agent; this is used as a proof-of-concept through which more insights can be gained with additional exploration.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_395
id caadria2020_395
authors Loo, Stella Yi Ning, Jayashankar, Dhileep Kumar, Gupta, Sachin and Tracy, Kenneth
year 2020
title Hygro-Compliant: Responsive Architecture with Passively Actuated Compliant Mechanisms
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
doi https://doi.org/10.52842/conf.caadria.2020.1.223
summary Research investigating water-driven passive actuation demonstrates the potential to transform how buildings interact with their environment while avoiding the complications of conventionally powered actuation. Previous experiments evidence the possibilities of bi-layer materials (Reichert, Menges, and Correa 2015; Correa et al. 2015) and mechanical assemblies with discretely connected actuating members (Gupta et al. 2019). By leveraging changes in weather to power actuated building components these projects explore the use of smart biomaterials and responsive building systems. Though promising the implementation of these technologies requires deep engagement into material synthesis and fabrication. This paper presents the design and prototyping of a rain responsive façade system using chitosan hygroscopic films as actuators counterbalanced by programmed compliant mechanisms. Building on previous work into chitosan film assemblies this research focuses on the development of compliant mechanisms as a means of controlling movement without over-complicated rotating parts.
keywords Passive Actuation; Responsive Architecture; Bio-polymers; 4D Structures; Compliant Mechanism
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2020_586
id sigradi2020_586
authors Perelli Soto, Bruno; Soza Ruiz, Pedro; Tapia Zarricueta, Ricardo
year 2020
title Towards the development of Smart Buildings: A Lowcost IoT Healthcare Management Proposal in Times of a World Pandemic
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 586-593
summary This research addresses the impact that technologies, particularly the Internet of Things, have when facing - directly or indirectly - the current panorama of a pandemic due to COVID-19. First, we review the literature and propose a context that allows for efficient clarification regarding two concerns: where should we insert this project? What are the implications and scope of such a decision? Secondly, we present experiences of implementation of IoT prototypes, which – in context - consider the education of the population of an apartment building, the mitigation and detection of COVID-19 symptoms, and the ability to obtain data from these experiences.
keywords COVID-19, IoT, Design, Smart buildings, Lockdown
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_154
id caadria2020_154
authors Stojanovic, Vladeta, Hagedorn, Benjamin, Trapp, Matthias and Döllner, Jürgen
year 2020
title Ontology-Driven Analytics for Indoor Point Clouds
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 537-546
doi https://doi.org/10.52842/conf.caadria.2020.2.537
summary Automated processing, semantic enrichment and visual analytics methods for point clouds are often use-case specific for a given domain (e.g, for Facility Management (FM) applications). Currently, this means that applicable processing techniques, semantics and visual analytics methods need to be selected, generated or implemented by human domain experts, which is an error-prone, subjective and non-interoperable process. An ontology-driven analytics approach can be used to solve this problem by creating and maintaining a Knowledge Base, and utilizing an ontology for automatically suggesting optimal selection of processing and analytics techniques for point clouds. We present an approach of an ontology-driven analytics concept and system design, which supports smart representation, exploration, and processing of indoor point clouds. We present and provide an overview of high-level concept and architecture for such a system, along with related key technologies and approaches based on previously published case studies. We also describe key requirements for system components, and discuss the feasibility of their implementation within a Service-Oriented Architecture (SOA).
keywords Knowledge Base; Point Clouds; Semantic Enrichment; Service-Oriented Architecture; Ontology
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id sigradi2020_97
id sigradi2020_97
authors Hernández, Silvia Patricia; Chaves, Cristina; Ron, Lucía
year 2020
title INHABIT - information and service microarchitecture for University campus
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 97-103
summary This research team rethought a microarchitecture design with service for the entire community of the city of Cordoba at various sites in it. A real space is proposed that territorializes the digital, designed and built with new technologies with the aim of spreading to the city all the open activities carried out by the area of culture and extension of the National University of Cordoba, through the incorporation of technological means that are identified with the application of home automation and sustainability. The plan includes a network of microarchitectures throughout the city, beginning with the location on campus.
keywords Microarchitecture, Inclusivity, New technologies, Comfort
series SIGraDi
email
last changed 2021/07/16 11:48

_id acadia20_170
id acadia20_170
authors Li, Peiwen; Zhu, Wenbo
year 2020
title Clustering and Morphological Analysis of Campus Context
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 170-177.
doi https://doi.org/10.52842/conf.acadia.2020.2.170
summary “Figure-ground” is an indispensable and significant part of urban design and urban morphological research, especially for the study of the university, which exists as a unique product of the city development and also develops with the city. In the past few decades, methods adapted by scholars of analyzing the figure-ground relationship of university campuses have gradually turned from qualitative to quantitative. And with the widespread application of AI technology in various disciplines, emerging research tools such as machine learning/deep learning have also been used in the study of urban morphology. On this basis, this paper reports on a potential application of deep clustering and big-data methods for campus morphological analysis. It documents a new framework for compressing the customized diagrammatic images containing a campus and its surrounding city context into integrated feature vectors via a convolutional autoencoder model, and using the compressed feature vectors for clustering and quantitative analysis of campus morphology.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2019_124
id cdrf2019_124
authors Maider Llaguno-Munitxa and Elie Bou-Zeid
year 2020
title Sensing the Environmental Neighborhoods Mobile Urban Sensing Technologies (MUST) for High Spatial Resolution Urban Environmental Mapping
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_12
summary Given the benefits of fine mapping of large urban areas affordably, mobile environmental sensing technologies are becoming increasingly popular to complement the traditional stationary weather and air quality sensing stations. However the reliability and accuracy of low-cost mobile urban technologies is often questioned. This paper presents the design of a fast-response, autonomous and affordable Mobile Urban Sensing Technology (MUST) for the acquisition of high spatial resolution environmental data. Only when accurate neighborhood scale environmental data is affordable and accessible for architects, urban planners and policy makers, can design strategies to enhance urban health be effectively implemented. The results of an experimental air quality sensing campaign developed within Princeton University Campus is presented.
series cdrf
email
last changed 2022/09/29 07:51

_id acadia20_350
id acadia20_350
authors Atanasova, Lidia; Mitterberger, Daniela; Sandy, Timothy; Gramazio, Fabio; Kohler, Matthias; Dörfler, Kathrin
year 2020
title Prototype As Artefact
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 350-359.
doi https://doi.org/10.52842/conf.acadia.2020.1.350
summary In digital design-to-fabrication workflows in architecture, in which digitally controlled machines perform complex fabrication tasks, all design decisions are typically made before production. In such processes, the formal definition of the final shape is explicitly inscribed into the design model by means of corresponding step-by-step machine instructions. The increasing use of augmented reality (AR) technologies for digital fabrication workflows, in which people are instructed to carry out complex fabrication tasks via AR interfaces, creates an opportunity to question and adjust the level of detail and the nature of such explicit formal definitions. People’s cognitive abilities could be leveraged to integrate explicit machine intelligence with implicit human knowledge and creativity, and thus to open up digital fabrication to intuitive and spontaneous design decisions during the building process. To address this question, this paper introduces open-ended Prototype-as-Artefact fabrication workflows that examine the possibilities of designing and creative choices while building in a human-robot collaborative setting. It describes the collaborative assembly of a complex timber structure with alternating building actions by two people and a collaborative robot, interfacing via a mobile device with object tracking and AR visualization functions. The spatial timber assembly being constructed follows a predefined grammar but is not planned at the beginning of the process; it is instead designed during fabrication. Prototype-as-Artefact thus serves as a case study to probe the potential of both intuitive and rational aspects of building and to create new collaborative work processes between humans and machines.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_149
id sigradi2020_149
authors Canestrino, Giuseppe; Laura, Greco; Spada, Francesco; Lucente, Roberta
year 2020
title Generating architectural plan with evolutionary multiobjective optimization algorithms: a benchmark case with an existent construction system
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 149-156
summary In architectural design, evolutionary multiobjective optimization algorithms (EMOA) have found use in numerous practical applications in which qualitative and quantitative aspects can be transformed into fitness functions to be optimized. This paper shows that they can be used in an architectural plan design process that starts from a more traditional approach. The benchmark case uses a novel construction system, called Ac.Ca. Building, with a vast architectural and technological database, arleady validated, to generate architectural plan for a residential towerbuilding with a parametric approach and EMOA. The proposed framework differs from past research because uses spatial units with high level of architectural and tecnological definition.
keywords Architectural design, Parametric architecture, Performance-driven design, architectural layout, evolutionary multiobjective optimization
series SIGraDi
email
last changed 2021/07/16 11:48

_id acadia20_638
id acadia20_638
authors Claypool, Mollie; Jimenez Garcia, Manuel; Retsin, Gilles; Jaschke, Clara; Saey, Kevin
year 2020
title Discrete Automation
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 638-647.
doi https://doi.org/10.52842/conf.acadia.2020.1.638
summary Globally, the built environment is inequitable. And while construction automation is often heralded as the solution to labor shortages and the housing crisis, such methods tend to focus on technology, neglecting the wider socioeconomic contexts. Automated Architecture (AUAR), a spinoff of AUAR Labs at The Bartlett School of Architecture, UCL, asserts that a values-centered, decentralized approach to automation centered around local communities can begin to address this material hegemony. The paper introduces and discusses AUAR’s platform-based framework, Discrete Automation, which subverts the status quo of automation that excludes those who are already disadvantaged into an inclusive network capable of providing solutions to both the automation gap and the assembly problem. Through both the wider context of existing modular housing platforms and issues of the current use of automated technologies in architectural production, Discrete Automation is discussed through the example of Block Type A, a discrete timber building system, which in conjunction with its combinatorial app constitutes the base of a community-led housing platform developed by AUAR. Built case studies are introduced alongside a discussion of the applied methodologies and an outlook on the platform’s potential for scalability in an equitable, sustainable manner.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_660
id sigradi2020_660
authors Ekerman, Sergio Kopinski; Silva, Larissa Gonçalves Maia da
year 2020
title Practices on Innovative Technologies: a digital (pre)fabrication experience at the undergraduate program in architecture and urbanism
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 660-667
summary The present article describes an introductory digital (pre)fabrication course directed to undergraduate students in the School of Architecture at Universidade Federal da Bahia, its goals, processes and results, which aim at the update of technologies studies within the arrival of a customized CNC Router at the construction lab. “Practices on Innovative Technologies” brings the students into an experience of hands-on activities, both introducing digital fabrication technologies to their background as well as creating a critical and analytical understanding about these tools, using ferrocement prefabrication as a theoretical and practical framework.
keywords Digital Fabrication, CAD/CAM, Experimental Building Site, Prototyping, CNC, Prefabrication
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_180
id caadria2020_180
authors Jensen, Mads Brath and Das, Avishek
year 2020
title Technologies and Techniques for Collaborative Robotics in Architecture - - establishing a framework for human-robotic design exploration
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 293-302
doi https://doi.org/10.52842/conf.caadria.2020.2.293
summary This study investigates the technological and methodological challenges in establishing an indeterministic approach to robotic fabrication that allows for a collaborative and creative design/fabrication process. The research objective enquires into how robotic processes in architecture can move from deterministic fabrication processes towards explorative and indeterministic design processes. To address this research objective, the study specifically explores how an architect and a robot can engage in a process of co-creation and co-evolution, that is enabled by a collaborative robotic arm equipped with an electric gripper and a web camera. Through a case-based experiment, of designing and constructing an adjustable façade system consisting of parallel wood lamellas, designer and robotic system co-create by means of interactive processes. The study will present and discuss the technological implementations used to construct the interactive robotic-based design process, with emphasis on the integration of visual analysis features in Grasshopper and on the benefits of establishing a state machine for interactive and creative robotic control in architecture.
keywords Design cognition; Digital fabrication ; Construction; Human-computer interaction
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2020_036
id ecaade2020_036
authors Kamari, Aliakbar and Kirkegaard, Poul Henning
year 2020
title Holistic Building Design - An integrated building design methodology based on systems thinking for reaching sustainability
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 505-514
doi https://doi.org/10.52842/conf.ecaade.2020.1.505
summary This paper introduces a new perspective on methodological requirements in building design related to questions of sustainability, where stakeholders ought to look at design in an integrated way when economy, society, and technical components are embedded in an ecological holistic perspective. To bind these different aspects together and face complexity, while the goal is to reach sustainability, Holistic Building Design (HBD) is drawn on existing concepts of systems thinking (ST), integrated design processes (IDP), and application of innovative technologies through building information modeling (BIM). The main aim of this approach is to involve deeper in all aspects of sustainable building design. The methodology is introduced and empirically practiced in a master's level course, and a general overview besides the first results of this on-going process are presented in this paper. It is observed that the HBD framework could significantly influence the understanding of the design process and enhancing it by iterative decision-making and turning the focus on the early design stage.
keywords Sustainability; Systems thinking; Integrated Design Process; Building Information Modeling; Holistic Building Design; Complexity
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_866222 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002