CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 588

_id caadria2020_052
id caadria2020_052
authors Wang, Joann
year 2020
title Digital Architextiles - Nonwoven textile thermoforming in robotic fabrication
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 45-54
doi https://doi.org/10.52842/conf.caadria.2020.1.045
summary This paper includes an experimental study of parametric design, which is combined with digital fabrication and weaving techniques for Digital Architextiles. Digital Architextiles is a way of combining circular material of PET (Polyethylene Terephthalate) winding and thermoforming fabrication with robot collaboration for circular economy. In addition, combined with the concept of circular economy, mass customization with tailor-made material can effectively reduce unnecessary waste. Collaborating with parameterized tools, the research work has developed lightweight structures in different winding patterns. Therefore, starting from the exploration of the material system, the paper studies the circular PET material fiber in the digital process assisted by the robot arms, and proposes a circular-based system with high adaptability and freedom, which can be used for the production tool in the multi-stage manufacturing, and to produce a building winding unit responding to various needs in circular economy to various surface shapes.
keywords PET material of Circular Economy; Parametric Design; Winding Fabrication; Thermoforming Fabrication; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2020_053
id ecaade2020_053
authors Ren, Yue, Chu, Jie and Zheng, Hao
year 2020
title Dynamic Symbiont - An Interactive Urban Design Method Combining Swarm Intelligence and Human Decisions
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 383-392
doi https://doi.org/10.52842/conf.ecaade.2020.1.383
summary Can a virtual city game be built by both the public and computer-based on real-site data? In the current process of deepening global connectivity, requirements for an effective urban design are no longer limited to functions or aesthetics, but a smart, dynamic complex with multi-interactions of data, group behaviours, and physical space. This paper introduces the logic of swarm intelligence and particle system for proposing a new urban design methodology. The platforms range from simulations that quantify the impact of the disruptive interventions of city activities to communicable collaboration between different users in a UI system, which creates virtual connections between optimized urbanscape and users. In the design system, based on the context data, the computer firstly simulates and optimizes the existing 2D activity joints between the people and analyzed the current spatial connection nodes into certain design rules. Through optimal programming for spatial connection and data iterations, the activity connection structures in the second simulation are abstracted into a set of interactive 3D topographic. The final data-visualization results are presented as a co-building megacity in a virtual construction game. Users can choose the virtual building unit types and intuitively influence the future urbanscape decision through virtual construction.
keywords Swarm Intelligence; Particle System; Digital Simulation; Human-Machine Interaction; Data Visualization
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2020_349
id sigradi2020_349
authors González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Quitral-Zapata, Francisco Javier; Valenzuela-Astudillo, Eduardo Antonio
year 2020
title SISCOM: Cooperative Multi-Robot Systems in Construction
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 349-356
summary We present an ongoing research project focused on the development of more efficient setups for cooperative multi-robot systems in 3D-printed construction. Early kinematic simulations of a mobile robotic cell prototype with two ceiling-mounted orbiting manipulators have provided new insights into 3D printing topology. An extrusion nozzle is mounted on each collaborative robot whose primary function is to match the extrusion path to the print contour while they move along a circular path. The challenge of setting up on site a semi-structured environment for cooperative multi-robot 3D printing led us to think up a new species of construction 3D printer.
keywords 3D-Printed construction, Cooperative multi-robot system, Mobile robotic cell, Collaborative robot, Robots in architecture
series SIGraDi
email
last changed 2021/07/16 11:49

_id artificial_intellicence2019_129
id artificial_intellicence2019_129
authors Hua Chai, Liming Zhang, and Philip F. Yuan
year 2020
title Advanced Timber Construction Platform Multi-Robot System for Timber Structure Design and Prefabrication
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_9
summary Robotic Timber Construction has been widely researched in the last decade with remarkable advancements. While existing robotic timber construction technologies were mostly developed for specific tasks, integrated platforms aiming for industrialization has become a new trend. Through the integration of timber machining center and advanced robotics, this research tries to develop an advanced timber construction platform with multi-robot system. The Timber Construction Platform is designed as a combination of three parts: multi-robot system, sensing system, and control system. While equipped with basic functions of machining centers that allows multi-scale multifunctional timber components’ prefabrication, the platform also served as an experimental facility for innovative robotic timber construction techniques, and a service platform that integrates timber structure design and construction through real-time information collection and feedback. Thereby, this platform has the potential to be directly integrated into the timber construction industry, and contributes to a mass-customized mode of timber structures design and construction.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id caadria2020_022
id caadria2020_022
authors Wibranek, Bastian, Wietschorke, Leon, Glaetzer, Timm and Tessmann, Oliver
year 2020
title Sequential Modular Assembly - Robotic Assembly of Cantilevering Structures through Differentiated Load Modules
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 373-382
doi https://doi.org/10.52842/conf.caadria.2020.2.373
summary The principles of computation, robotics, and modular building elements offer excellent opportunities for automation in architecture. A building system that incorporates these principles could cope with detachable building elements, sequential assembly processes, and algorithmic adaptability. In this paper, we investigate the strategic distribution of weight through a set of modules with different weights to build cantilevering structures. The modules are designed to have self-calibrating qualities, to allow a precisely defined positioning and thus be suitable for a robotic assembly. We implement an algorithm that automatically calculates the position and amount of weight modules. The exact placements are translated into robot instructions. By removing or adding a single module, we stimulate the collapse of the assembled structures, highlighting the precise measures of our approach. This approach may find application in scenarios where it is necessary to build without temporary support while still having a stable construction through each assembly step. Finally, we illustrate a framework to build structures that can easily be disassembled, thus allowing the reuse of the building elements.
keywords Discretization; Multi Modular Assembly; Automation; Robotics
series CAADRIA
email
last changed 2022/06/07 07:57

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_299
id ecaade2020_299
authors Colmo, Claudia and Ayres, Phil
year 2020
title 3d Printed Bio-hybrid Structures - Investigating the architectural potentials of mycoremediation
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 573-582
doi https://doi.org/10.52842/conf.ecaade.2020.1.573
summary In this paper, we present a speculative design concept for a mycelium-based living bio-hybrid architectural system. The system combines inoculated lignocellulosic substrates with soil-based 3d printed structures that function as growth scaffolds, material boundaries and spatial organisers. The primary objective of the system is to exploit mycelium as a living remediator of contaminated sites, in the form of architectural proposition. The feasibility of this concept is investigated in two ways: 1) material composition development and process control parameters for soil-based 3d printing, 2) the synthesis of printed prototypes to determine geometric and environmental parameters for promoting colonisation of mycelium and supporting its role as both structural binder and 'Mycorestoration' agent. This work is contextualised with reference to the state-of-the-art in order to identify the research gap and articulate the contribution of a mycelium-based remediating architecture. The merits and limits of the experimental results are reflected upon and trajectories of further investigation outlined.
keywords mycelium; mycorestoration; soil contamination; 3d printing; bio-hybrid architecture; design based experimentation
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2020_032
id caadria2020_032
authors Gu, Zhuoxing and Yang, Chunxia
year 2020
title Generation of Public Space Structure Based on Digital Multi-agent System - Taking the interaction between self-consensus "Stigmergy" particles and the old city area as an example
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 285-294
doi https://doi.org/10.52842/conf.caadria.2020.1.285
summary In the study, the ant colony behavior was simulated to establish a parametric multi-agent system with independent consensus "Stigmergy" for interaction with the site. In the experiment, the initial points of the particles correspond to the key historical buildings, and the target points correspond to the important public space nodes. Edit and adjust the motion characteristics, search features, generation and disappearance characteristics of the simulated particles to obtain the main consensus particle swarm distribution and the distributed consensus particle swarm distribution. This form has a compliant or conflicting relationship with the existing urban environment. Using the contours of the self-consensus spatial form, the particle swarm density, and the pointing relationship between the particles and the building can provide a basis for the transformation and renewal of the existing urban environment, thus forming a spatial transformation strategy that more closely matches the user behavior in the space.
keywords Multi-agent system; Particle property construction; Stigmergy; Self-consensus particles; Public space structure
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2020_393
id ecaade2020_393
authors Peters, Brady, Lappalainen, Benjamin and Fiori, Alexandra
year 2020
title Auralizing Acoustic Architecture - A Multi-channel Ambisonic Listening Room for Architectural Design
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 161-168
doi https://doi.org/10.52842/conf.ecaade.2020.1.161
summary There is a need for architectural design tools that enable designers to understand how spaces sound. This project aims to develop a method by which architects can gain experiential acoustic feedback on existing and proposed projects through the use of ambisonic spatial auralization. This research proposes that the creation of a fully three-dimensional soundfield can be a tool for architectural acoustic design. The use of ambisonics has largely been limited to virtual reality applications; however, with the growing support in a variety of popular software, opportunities for using spatial audio as a design tool are beginning to make themselves apparent. This paper reports on an experimental setup for a 12-channel, speaker-based auralization system that plays recorded and simulated ambisonic tracks. Novel uses for this setup are proposed.
keywords Architectural Acoustics; Acoustic Simulation; Auralization; Ambisonics
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia20_220p
id acadia20_220p
authors Rieger, Uwe; Liu, Yinan
year 2020
title LightWing II
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 220-225
summary LightWing II is an immersive XR installation that explores hybrid design strategies equally addressing physical and digital design parameters. The interactive project links a kinetic structure with dynamic digital information in the form of 3D projected imagery and spatial sound. A key component of the project was the development of a new rendering principle that allows the accurate projection of stereoscopic images on a moving target screen. Using simple red/cyan cardboard glasses, the system expands the applications of contemporary AR headsets beyond an isolated viewing towards a communal multi-viewer event. LightWing`s construction consists of thin flexible carbon fibre rods used to tension an almost invisible mesh screen. The structure is asymmetrically balanced on a single pin joint and monitored by an IMU. A light touch sets the delicate wing-like object into a rotational oscillation. As a ‘hands-on’ experience, LightWing II creates a mysterious sensation of tactile data and enables the user to navigate through holographic narratives assembled in four scenes, including the interaction with swarms of three winged creatures, being immersed in a silky bubble, and a journey through a velvet wormhole. The user interface is dissolved through the direct linkage between the physical construction and the dynamic digital content. The project was developed at the arc/sec Lab at the University of Auckland. The Lab explores user responsive constructions where dynamic properties of the virtual world influence the material world and vice versa. The Lab’s vision is to re-connect the intangible computer world to the multisensory qualities of architecture and urban spaces. With a focus on intuitive forms of user interaction, the arc/sec Lab uses large-scale prototypes and installations as the driving method for both the development and the demonstration of new cyber-physical design principles.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_556
id acadia20_556
authors Prado, Marshall
year 2020
title Computational Design of Fiber Composite Tower Structures
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 556-563.
doi https://doi.org/10.52842/conf.acadia.2020.1.556
summary This paper describes the computational design aspects of large-scale fiber composite tower structures that are fabricated using novel coreless filament winding processes. Current research on coreless filament winding has shown how high-performance composite materials can be used for many architectural scenarios; however, structural typologies for towers have never been tested. Additionally, biomimetic research on the lightweight lattice systems of cactus skeletons has demonstrated the potential for using interconnected multinodal component geometries to make efficient, tall structures. New integrated computational design and fabrication processes are required to utilize multi-nodal components in composite towers. These processes integrate biomimetic principles, structural performance, material organization, and fabrication logic. The goal of this research is to streamline the form-finding process, to more accurately simulate coreless wound geometries, and to develop adaptive fiber simulation processes for winding syntax development and robotic fiber winding. These techniques improved accuracy and control over existing methods of fabrication for coreless wound structures while simultaneously making the process more efficient. The research presented here will describe and showcase the key improvements used in the design and fabrication of a full-scale architectural demonstrator.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_310
id ecaade2020_310
authors Schulz, Daniel, Degkwitz, Till, Luft, Jonas, Zhang, Yuxiang, Stradtmann, Nicola and Noennig, Jörg Rainer
year 2020
title Cockpit Social Infrastructure - Developing a planning support system in Hamburg
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 341-350
doi https://doi.org/10.52842/conf.ecaade.2020.2.341
summary In a complex urban scenario with a growing number of stakeholders and high dynamic developments, decision makers rely heavily on public data to make informed decisions. Often though, the available data is heterogeneous and stems from incomplete or inconsistent sources. The planning process, especially the definition of planning goals/needs, is often delayed due to time-consuming data procurement and assessment. This paper describes the development of the Cockpit Social Infrastructure (CoSI), a GIS-based planning support system that serves as an easy-access interface between Hamburgs Urban Data Platform GIS data infrastructure and the municipal planners for social infrastructure, bridging the gap between disciplines and facilitating communication and decision-making between stakeholders. CoSI takes full advantage of the UDP infrastructure and aims to introduce a city-wide tool for planners to conduct holistic, evidence-based planning, grounded in the latest and regularly updated statistical data. The paper outlines the project genesis and underlying technical and administrative structures.
keywords Planning Support System; GIS; Social Infrastructure; Urban Data
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2020_411
id ecaade2020_411
authors Muehlbauer, Manuel, Song, Andy and Burry, Jane
year 2020
title Smart Structures - A Generative Design Framework for Aesthetic Guidance in Structural Node Design - Application of Typogenetic Design for Custom-Optimisation of Structural Nodes
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-632
doi https://doi.org/10.52842/conf.ecaade.2020.1.623
summary Virtual prototypes enable performance simulation for building components. The presented research extended the application of generative design using virtual prototypes for interactive optimisation of structural nodes. User-interactivity contributed to the geometric definition of design spaces rather than the final geometric outcome, enabling another stage of generative design for the micro-structure of the structural node. In this stage, the micro-structure inside the design space was generated using fixed topology. In contrast to common optimisation strategies, which converge towards a single optimal outcome, the presented design exploration process allowed the regular review of design solutions. User-based selection guided the evolutionary process of design space exploration applying Online Classification. Another guidance mechanism called Shape Comparison introduced an intelligent control system using an inital image input as design reference. In this way, aesthetic guidance enabled the combined evaluation of quantitative and qualitative criteria in the custom-optimisation of structural nodes. Interactive node design extended the potential for shape variation of custom-optimized structural nodes by addressing the geometric definition of design spaces for multi-scalar structural optimisation.
keywords generative design; evolutionary computation; interactive machine learning; typogenetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2020_371
id sigradi2020_371
authors Scheeren, Rodrigo; Sperling, David M.
year 2020
title Flexible multi-scalar system: 3D printing of modular components for adaptable tensioned structures
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 371-376
summary In face of the improvement of additive manufacturing techniques for architecture and construction, the paper presents a design experiment that aims to demonstrate the feasibility of using an accessible technology such as a 3D desktop printer for the creation of low-cost artifacts. Based on the "research by design" method and "multi-scalar modeling" approach, it shows the creation of a digitally manufactured architectural component that can integrate as a final product a lightweight and flexible construction system. The result can be geometrically adapted and applied to canopies or facades, achieving an interface between high and low technologies.
keywords Digital fabrication, 3D printing, Architectural design, Multi-scalar system, High-Low tech
series SIGraDi
email
last changed 2021/07/16 11:49

_id ijac202018303
id ijac202018303
authors Pedersen, Jens; Narendrakrishnan Neythalath, Jay Hesslink, Asbjørn Søndergaard and Dagmar Reinhardt
year 2020
title Augmented drawn construction symbols: A method for ad hoc robotic fabrication
source International Journal of Architectural Computing vol. 18 - no. 3, 254-269
summary The global construction industry is one the least productive sectors over a 30-year period, which arguably could be related to virtually no implementation of digital and automation technologies within the construction industry. Construction processes arguably consist of expensive manual labor or manual operation of mechanized processes, where hand-drawn markings on work-objects or partly build structures are used to inform and steer the construction process or allows for ad hoc adjustments of elements. As such, the use of on-object, hand-drawn information is considered integral to the modus operandi of a plurality of construction trades, where timber construction and carpentry are of special interest. In contrast, emerging methods of digital production in timber construction implicitly or explicitly seek to eliminate the interpretive component to the construction work, imposing a top-down paradigm of file-to-factory execution. While such systems offer a performance increase compared to manual labor, it is notoriously sensitive to construction tolerances and requires a high level of specialism to be operated, which could alienate craft-educated workers. This research argues that developing methods for digital production compatible with on- site human interpretation and adaptation can help overcome these challenges. In addition, these methods offer the opportunity to increase the robustness and versatility of digital fabrication in the context of the construction site. The article reports on a new method titled “augmented drawn construction symbols” that through a visual communication system converts on-object hand-drawn markings to CAD drawings and sends them to a robotic system. The process is demonstrated on a full-scale prototypical robot setup.
keywords Augmented reality, augmented robotics, computational craft, human machine interface
series other
type normal paper
email
last changed 2020/11/02 13:40

_id cdrf2019_265
id cdrf2019_265
authors Yue Qi, Ruqing Zhong, Benjamin Kaiser, Long Nguyen,Hans Jakob Wagner, Alexander Verl, and Achim Menges
year 2020
title Working with Uncertainties: An Adaptive Fabrication Workflow for Bamboo Structures
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_25
summary This paper presents and investigates a cyber-physical fabrication work-flow, which can respond to the deviations between built- and designed form in realtime with vision augmentation. We apply this method for large scale structures built from natural bamboo poles. Raw bamboo poles obtain evolutionarily optimized fibrous layouts ideally suitable for lightweight and sustainable building construction. Nevertheless, their intrinsically imprecise geometries pose a challenge for reliable, automated construction processes. Despite recent digital advancements, building with bamboo poles is still a labor-intensive task and restricted to building typologies where accuracy is of minor importance. The integration of structural bamboo poles with other building layers is often limited by tolerance issues at the interfaces, especially for large scale structures where deviations accumulate incrementally. To address these challenges, an adaptive fabrication process is developed, in which existing deviations can be compensated by changing the geometry of subsequent joints to iteratively correct the pose of further elements. A vision-based sensing system is employed to three-dimensionally scan the bamboo elements before and during construction. Computer vision algorithms are used to process and interpret the sensory data. The updated conditions are streamed to the computational model which computes tailor-made bending stiff joint geometries that can then be directly fabricated on-the-fly. In this paper, we contextualize our research and investigate the performance domains of the proposed workflow through initial fabrication tests. Several application scenarios are further proposed for full scale vision-augmented bamboo construction systems.
series cdrf
email
last changed 2022/09/29 07:51

_id ijac202018205
id ijac202018205
authors Ahlquist, Sean
year 2020
title Negotiating human engagement and the fixity of computational design: Toward a performative design space for the differently-abled bodymind
source International Journal of Architectural Computing vol. 18 - no. 2, 174-193
summary Computational design affords agency: the ability to orchestrate the material, spatial, and technical architectural system. In this specific case, it occurs through enhanced, authored means to facilitate making and performance—typically driven by concerns of structural optimization, material use, and responsivity to environmental factors—of an atmospheric rather than social nature. At issue is the positioning of this particular manner of agency solely with the architect auteur. This abruptly halts—at the moment in which fabrication commences—the ability to amend, redefine, or newly introduce fundamentally transformational constituents and their interrelationships and, most importantly, to explore the possibility for extraordinary outcomes. When the architecture becomes a functional, social, and cultural entity, in the hands of the idealized abled-bodied user, agency—especially for one of an otherly body or mind—is long gone. Even an empathetic auteur may not be able to access the motivations of the differently-abled body and neuro- divergent mind, effectively locking the constraints of the design process, which creates an exclusionary system to those beyond the purview of said auteur. It can therefore be deduced that the mechanisms or authors of a conventional computational design process cannot eradicate the exclusionary reality of an architectural system. Agency is critical, yet a more expansive terminology for agent and agency is needed. The burden to conceive of capacities that will always be highly temporal, social, unpredictable, and purposefully unknown must be shifted far from the scope of the traditional directors of the architectural system. Agency, and who it is conferred upon, must function in a manner that dissolves the distinctions between the design, the action of designing, the author of design, and those subjected to it.
keywords Adaptive environments, neurodiversity, inclusion, systems thinking, computational design, disability theory, material systems, design agency
series journal
email
last changed 2020/11/02 13:34

_id acadia20_108p
id acadia20_108p
authors Akbarzadeh, Masoud; Ghomi, Ali Tabatabaie; Bolhassani, Mohammad; Akbari, Mostafa; Seyedahmadian, Alireza; Papalexiou, Konstantinos
year 2020
title Saltatur
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 108-113.
summary The Saltatur (Dancer in Latin) demonstrates innovative research in the design and fabrication of a prefab structure consisting of spatial concrete nodes assembled in a compression-only configuration. The compression-only body is kept in equilibrium using the post-tensioning steel rods at the top and the bottom of the structure, supporting an ultra-thin glass structure on its top. A node-based assembly was considered as a method of construction. An innovative detailing was developed that allows locking each member in its exact location in the body, obviating the need for a particular assembly sequence. A bespoke steel connection transfers the tensile forces between the concrete members effectively. Achieving a high level of efficiency in utilizing concrete for spatial systems requires a robust and powerful structural design and fabrication approach that has been meticulously exhibited in this project. The structural form of the project was developed using a three-dimensional geometry-based structural design method known as 3D Graphic Statics with precise control over the magnitude of the lateral forces in the system. The entire concrete body of the structure is held in compression by the tension ties at the top and bottom of the structure with no horizontal reactions at the supports. This particular internal distribution of forces in the form of the compression-only body reduces the bending moment in the system and, therefore, the required mass to span such a distance.
series ACADIA
type project
email
last changed 2021/10/26 08:03

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_985510 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002