CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 644

_id acadia20_94
id acadia20_94
authors Yoo, Wonjae; Kim, Hyoungsub; Shin, Minjae; J.Clayton, Mark
year 2020
title BIM-Based Automatic Contact Tracing System Using Wi-Fi
doi https://doi.org/10.52842/conf.acadia.2020.1.094
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 94-101.
summary This study presents a BIM-based automatic contact tracing method using a stations-oriented indoor localization (SOIL) system. The SOIL system integrates BIM models and existing network infrastructure (i.e., Wi-Fi), using a clustering method to generate roomlevel occupancy schedules. In this study, we improve the accuracy of the SOIL system by including more detailed Wi-Fi signal travel sources, such as reflection, refraction, and diffraction. The results of field measurements in an educational building show that the SOIL system was able to produce room-level occupant location information with a 95.6% level of accuracy. This outcome is 2.6% more accurate than what was found in a previous study. We also describe an implementation of the SOIL system for conducting contact tracing in large buildings. When an individual is confirmed to have COVID-19, public health professionals can use this system to quickly generate information regarding possible contacts. The greatest strength of this SOIL implementation is that it has wide applicability in largescale buildings, without the need for additional sensing devices. Additional tests using buildings with multiple floors are required to further explore the robustness of the system.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_102
id acadia20_102
authors Stojanovic, Djordje; Vujovic, Milica; Miloradovic, Branko
year 2020
title Indoor Positioning System for Occupation Density Control
doi https://doi.org/10.52842/conf.acadia.2020.1.102
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 102-109.
summary The reported research focuses on occupational density as an increasingly important architectural measure and uses occupancy simulation to optimize distancing criteria imposed by the COVID-19 pandemic. The paper addresses the following questions: How to engage computational techniques (CTs) to improve the accuracy of two existing types of indoor positioning systems? How to employ simulation methods in establishing critical occupation density to balance social distancing needs and the efficient use of resources? The larger objective and the aim of further research is to develop an autonomous system capable of establishing an accurate number of people present in a room and informing occupants if space is available according to prescribed sanitary standards. The paper presents occupancy simulation approximating input that would be provided by the outlined multisensor data fusion technique aiming to improve the accuracy of the existing indoor localization solutions. The projected capacity to capture information related to social distancing and occupants’ positioning is used to ground a method for determining a room-specific occupational density threshold. Our early results indicate that the type of activities, equipment, and furniture in a room, addressed through occupants’ positioning, may impact the frequency of distancing incidents. Our initial findings centered on simulation modeling indicate that data, composed of the two sets (occupant count and the number of recorded distancing incidents) can be overlapped to help establish room-specific standards rather than apply generic measures. In conclusion, we discuss the opportunities and challenges of the proposed system and its role after the pandemic.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_389
id ecaade2020_389
authors Nunes Locatelli, Daniel, Prazeres Veloso de Souza, Leonardo, Giantini, Guilherme, Curti, Vitor and Joly Requena, Carlos Augusto
year 2020
title Life Lamp - Connecting Design and People Through Emotion
doi https://doi.org/10.52842/conf.ecaade.2020.2.041
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 41-50
summary Nowadays it is possible to use technology to achieve emotion-oriented products related to the user experience. The aim of this paper is to address a design exploration that combines the use of algorithmic modeling in order to create a design that seeks to express meaning through emotional bonds with people. Life Lamp was created to represent a life cycle as a sensitive object consisting of three layers and a unique shade that produces a complex image, expressing the paths and surprises of our existence. The design process is a hybrid between top-down and bottom-up approaches. The designers worked both with a predefined heart-like 3D model as the design base and with agent-based modeling, widely explored by Craig Reynolds in the 1980s. Life lamp is a product that emerged as a result of Estudio Guto Requena's research that investigates the impact of digital culture through design by seeking to merge technology and affection.
keywords 3D Print Design; Agent-based System; Algorithmic Modeling; Emotional Design ; Digital Design; Mass Customization
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2020_154
id caadria2020_154
authors Stojanovic, Vladeta, Hagedorn, Benjamin, Trapp, Matthias and Döllner, Jürgen
year 2020
title Ontology-Driven Analytics for Indoor Point Clouds
doi https://doi.org/10.52842/conf.caadria.2020.2.537
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 537-546
summary Automated processing, semantic enrichment and visual analytics methods for point clouds are often use-case specific for a given domain (e.g, for Facility Management (FM) applications). Currently, this means that applicable processing techniques, semantics and visual analytics methods need to be selected, generated or implemented by human domain experts, which is an error-prone, subjective and non-interoperable process. An ontology-driven analytics approach can be used to solve this problem by creating and maintaining a Knowledge Base, and utilizing an ontology for automatically suggesting optimal selection of processing and analytics techniques for point clouds. We present an approach of an ontology-driven analytics concept and system design, which supports smart representation, exploration, and processing of indoor point clouds. We present and provide an overview of high-level concept and architecture for such a system, along with related key technologies and approaches based on previously published case studies. We also describe key requirements for system components, and discuss the feasibility of their implementation within a Service-Oriented Architecture (SOA).
keywords Knowledge Base; Point Clouds; Semantic Enrichment; Service-Oriented Architecture; Ontology
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2020_499
id ecaade2020_499
authors Ashour, Ziad and Yan, Wei
year 2020
title BIM-Powered Augmented Reality for Advancing Human-Building Interaction
doi https://doi.org/10.52842/conf.ecaade.2020.1.169
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 169-178
summary The shift from computer-aided design (CAD) to building information modeling (BIM) has made the adoption of augmented reality (AR) promising in the field of architecture, engineering and construction. Despite the potential of AR in this field, the industry and professionals have still not fully adopted it due to registration and tracking limitations and visual occlusions in dynamic environments. We propose our first prototype (BIMxAR), which utilizes existing buildings' semantically rich BIM models and contextually aligns geometrical and non-geometrical information with the physical buildings. The proposed prototype aims to solve registration and tracking issues in dynamic environments by utilizing tracking and motion sensors already available in many mobile phones and tablets. The experiment results indicate that the system can support BIM and physical building registration in outdoor and part of indoor environments, but cannot maintain accurate alignment indoor when relying only on a device's motion sensors. Therefore, additional computer vision and AI (deep learning) functions need to be integrated into the system to enhance AR model registration in the future.
keywords Augmented Reality; BIM; BIM-enabled AR; GPS; Human-Building Interactions; Education
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_228
id acadia20_228
authors Alawadhi, Mohammad; Yan, Wei
year 2020
title BIM Hyperreality
doi https://doi.org/10.52842/conf.acadia.2020.1.228
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 228-236.
summary Deep learning is expected to offer new opportunities and a new paradigm for the field of architecture. One such opportunity is teaching neural networks to visually understand architectural elements from the built environment. However, the availability of large training datasets is one of the biggest limitations of neural networks. Also, the vast majority of training data for visual recognition tasks is annotated by humans. In order to resolve this bottleneck, we present a concept of a hybrid system—using both building information modeling (BIM) and hyperrealistic (photorealistic) rendering—to synthesize datasets for training a neural network for building object recognition in photos. For generating our training dataset, BIMrAI, we used an existing BIM model and a corresponding photorealistically rendered model of the same building. We created methods for using renderings to train a deep learning model, trained a generative adversarial network (GAN) model using these methods, and tested the output model on real-world photos. For the specific case study presented in this paper, our results show that a neural network trained with synthetic data (i.e., photorealistic renderings and BIM-based semantic labels) can be used to identify building objects from photos without using photos in the training data. Future work can enhance the presented methods using available BIM models and renderings for more generalized mapping and description of photographed built environments.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_652
id sigradi2020_652
authors Baldessin, Guilherme Quinilato; Vaz, Matheus Motta; Medeiros, Givaldo Luiz; Fabricio, Márcio Minto
year 2020
title Modeling of steel and precast concrete components based on BIM systems and their application for the teaching of Architectural Design
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 652-659
summary This paper addresses the development of parametric components based on BIM (Building Information Modeling) tools and their application for the teaching of architecture and urban designs, in a discipline focused on housing typology. As a didactic and research method, the use of industrialized building technologies in steel and precast concrete for production efficiency and low maintenance is associated with the idea of the studio as a laboratory for verification and experimentation. The system was improved for two years, and provided students with greater constructive control, basic feedback on the budget, and mastery of representation, while they investigated alternative design concepts and new components.
keywords Architectural Design, Building Technology, BIM, Higher Education, Housing
series SIGraDi
email
last changed 2021/07/16 11:52

_id ecaade2024_409
id ecaade2024_409
authors Zarzycki, Andrzej
year 2024
title BIM-Driven Curriculum for Integrated Design Studios: Maintaining data interoperability and design flexibility
doi https://doi.org/10.52842/conf.ecaade.2024.2.027
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 27–36
summary This paper presents a curricular model for an integrated design studio focused on BIM-driven processes, satisfying the NAAB 2020's student performance criteria SC.5 and SC6. These criteria emphasize quantifiable, evidence-based design thinking by requiring the provision of "measurable environmental impacts" and "measurable outcomes of building performance." The studio, serving as a capstone project, integrates accessible design, user and regulatory requirements into building assemblies, structural and environmental systems, and life safety, underscoring the importance of measurable building performance outcomes. The adoption of computational design tools, particularly Building Information Modeling (BIM), facilitates engagement in environmental and user-focused simulations and ensures data interoperability throughout the design and post-occupancy phases. Utilizing a comprehensive set of tools, including life-cycle assessment (LCA) and energy modeling, the curriculum advances beyond simple simulations to support decision-making and multi-objective optimizations. This approach enables a new form of design thinking that incorporates a broader set of variables and considerations, encouraging students to meet various environmental impact and performance benchmarks, including LEED v.5 Certification points and Architecture 2030 energy standards. The integration of scenario simulation tools empowers students to autonomously advance their projects within a framework of constraints, marking a pedagogical shift towards faculty acting as learning facilitators and promoting student autonomy in design evaluation.
keywords building information modeling, BIM, building performance simulations, design education
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia20_110
id acadia20_110
authors Zhang, Mengni; Dewey, Clara; Kalantari, Saleh
year 2020
title Dynamic Anthropometric Modeling Interface
doi https://doi.org/10.52842/conf.acadia.2020.1.110
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 110-119.
summary In this paper, we propose a Kinect-based Dynamic Anthropometric Modeling Interface (DAMI), built in Rhinoceros with Grasshopper for patient room layout optimization and nurse posture evaluations. Anthropometry is an important field that studies human body measurements to help designers improve product ergonomics and reduce negative health consequences such as musculoskeletal disorders (MSDs). Unlike existing anthropometric tools, which rely on generic human body datasets and static posture models, DAMI tracks and records user postures in real time, creating custom 3D body movement models that are typically absent in current space-planning practices. A generic hospital patient room, which contains complex and ergonomically demanding activities for nurses, was selected as an initial testing environment. We will explain the project background, the methods used to develop DAMI, and demonstrate its capabilities. There are two main goals DAMI aims to achieve. First, as a generative tool, it will reconstruct dynamic body point cloud models, which will be used as input for optimizing room layout during a project’s schematic design phase. Second, as an evaluation tool, by encoding and visualizing the Rapid Entire Body Assessment (REBA) scores, DAMI will illustrate the spatiotemporal relationship between nurse postures and the built environment during a project’s construction phase or post occupancy evaluation. We envision a distributed system of Kinect sensors to be embedded in various hospital rooms to help architects, planners, and facility managers improve nurse work experiences through better space planning.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_918
id sigradi2020_918
authors Rocha, Bruno Massara; Celestino, Raquel Souza; Silva, Kiany Ferreira Damascena; Galimberti, Isabella Soares
year 2020
title Digital Sunflower: the potential of eco-oriented responsivity in the design process
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 918-923
summary In the face of the global energy crisis, this work presents the results of an effort to build an alternative device to improve the production of clean and renewable energy with high technology and low cost. The project titled Artificial Sunflower is a Arduino based opensource solar tracker conceived to enhance the performance of photovoltaic modules. It was used a research by design methodology to develop several prototypes using 3d printing and laser cutting. The results include hardware and software information used to build and configurate the system.
keywords Solar tracker, Opensource, Arduino, Cybernetics, Sustainability
series SIGraDi
email
last changed 2021/07/16 11:53

_id caadria2020_436
id caadria2020_436
authors Teng, Teng and Sabin, Jenny
year 2020
title PICA - A Designer Oriented Low-Cost Personal Robotic Fabrication Platform for Sketch Level Prototyping
doi https://doi.org/10.52842/conf.caadria.2020.2.473
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 473-483
summary As digital design and fabrication are becoming increasingly prevalent, it is essential to consider how these technologies can be made more affordable and intuitively introduced to individual designers with limited computing skills. In this paper, we present an affordable personal robotic fabrication platform, PICA, consisting of a 3D printed robotic arm with a set of controller programs. The platform allows designers with limited computational design skills to assemble motors and 3D printed parts easily and to operate it in a code-free environment with direct manipulation through 3D modeling software. With the real-time communication between 3D modeling software and this robotic fabrication platform, PICA also allows designers to efficiently change the topological properties of geometry during the fabrication process. Based on a comparative observation of several application scenarios of using PICA among two groups of architecture students, the research can be summarized as follows: 1.) The project has proved to be an affordable approach to ease the materializing process when converting a designer's initial intent from digital space to a physical prototype. 2.) Designers could be facilitated by utilizing this robotic fabrication platform, especially during the period of conceptual design.
keywords Robotic Fabrication; Design and Fabrication; Tool Development; Designer Oriented ; Ubiquitous Manufacturing
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2020_320
id caadria2020_320
authors Cheng, Jiahui, Zhang, Zhuoqun and Peng, Chengzhi
year 2020
title Parametric Modelling and Simulation of an Indoor Temperature Responsive Rotational Shading System Design
doi https://doi.org/10.52842/conf.caadria.2020.1.579
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 579-588
summary We present a digital design strategy for developing an intelligent rotational shading system responsive to changes in indoor temperatures. The strategy was first modelled with an Arduino-based physical prototype, identifying the concept of "mapping" between building indoor air temperature and rotational movement (angle) of external solar shading. A virtual parametric modelling approach was then followed to test three methods of mapping: linear, quadratic and logarithmic. The aim was to examine the performative differences exhibited by the three mapping methods in terms of the total comfort hours and estimated cooling energy demand during summer months. A typical cellular office in the Arts Tower of University of Sheffield was chosen for the parametric modelling (Rhino-Grasshopper) and environmental simulation (Honeybee-Ladybug) of horizontal and vertical rotational shading system design. The simulation shows that the horizontal shading system rotating according to the linear mapping methods achieve greater total comfort hours with lower cooling energy demand in the case of Arts Tower in Sheffield, UK.
keywords indoor temperature responsive shading; temperature-angle mapping; parametric design; kinetic shading; overheating
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2020_299
id ecaade2020_299
authors Colmo, Claudia and Ayres, Phil
year 2020
title 3d Printed Bio-hybrid Structures - Investigating the architectural potentials of mycoremediation
doi https://doi.org/10.52842/conf.ecaade.2020.1.573
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 573-582
summary In this paper, we present a speculative design concept for a mycelium-based living bio-hybrid architectural system. The system combines inoculated lignocellulosic substrates with soil-based 3d printed structures that function as growth scaffolds, material boundaries and spatial organisers. The primary objective of the system is to exploit mycelium as a living remediator of contaminated sites, in the form of architectural proposition. The feasibility of this concept is investigated in two ways: 1) material composition development and process control parameters for soil-based 3d printing, 2) the synthesis of printed prototypes to determine geometric and environmental parameters for promoting colonisation of mycelium and supporting its role as both structural binder and 'Mycorestoration' agent. This work is contextualised with reference to the state-of-the-art in order to identify the research gap and articulate the contribution of a mycelium-based remediating architecture. The merits and limits of the experimental results are reflected upon and trajectories of further investigation outlined.
keywords mycelium; mycorestoration; soil contamination; 3d printing; bio-hybrid architecture; design based experimentation
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia16_470
id acadia16_470
authors Sollazzo, Aldo; Baseta, Efilena; Chronis, Angelos
year 2016
title Symbiotic Associations
doi https://doi.org/10.52842/conf.acadia.2016.470
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 470-477
summary Soil contamination poses a series of important health issues, following years of neglect, constant industrialization, and unsustainable agriculture. It is estimated that 30% of the total cultivated soil in the world will convert to degraded land by 2020 (Rashid et al. 2016). Finding suitable treatment technologies to clean up contaminated water and soil is not trivial, and although technological solutions are sought, many are both resource-expensive and potentially equally unsustainable in long term. Bacteria and fungi have proved efficient in contributing to the bioavailability of nutrients and in aggregating formation in degraded soils (Rashid et al. 2016). Our research aims to explore the possible implementation of physical computing, computational analysis, and digital fabrication techniques in the design and optimization of an efficient soil remediation strategy using mycelium. The study presented here is a first step towards an overarching methodology for the development of an automated soil decontamination process, using an optimized bio-cell fungus seed that can be remotely populated using aerial transportation. The presented study focuses on the development of a methodology for capturing and modeling the growth of the mycelium fungus using photogrammetry-based 3D scanning and computational analysis techniques.
keywords computational design, photogrammetry, simulation, mycelium, 3d scanning, growth strategies
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2020_227
id ecaade2020_227
authors Bielski, Jessica, Langenhan, Christoph, Weyand, Babara, Neuber, Markus, Eisenstadt, Viktor and Althoff, Klaus-Dieter
year 2020
title Topological Queries and Analysis of School Buildings Based on Building Information Modeling (BIM) Using Parametric Design Tools and Visual Programming to Develop New Building Typologies
doi https://doi.org/10.52842/conf.ecaade.2020.2.279
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 279-288
summary School buildings are currently one of the largest portions of planning and building projects in Germany. In order to reflect the continuous developments in school building construction with constantly changing spatial requirements, an approach to analyse, derive and combine patterns of schools is proposed to adapt school typologies accordingly. Therefore, the topology is analysed, concerning interconnection methods, such as adjacency, accessibility, depth, and flow. The geometric analysis of e.g. room sizes or spatial proportions is enhanced by including grouping of rooms, estimated room clusters, or room shapes. Furthermore, text-matching is used to determine e.g. room program fulfilment, or assigning functional room descriptions to predefined room types, revealing huge differences of terms throughout time and architects. First results of the analyses show a relevant correlation between spatial proportion and room types.
keywords school building typologies; building information modeling (BIM); artificial intelligence (AI); topology; spatial analysis; digital semantic model
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia20_74
id acadia20_74
authors Bucklin, Oliver; Born, Larissa; Körner, Axel; Suzuki, Seiichi; Vasey, Lauren; T. Gresser, Götz; Knippers, Jan; Menges,
year 2020
title Embedded Sensing and Control
doi https://doi.org/10.52842/conf.acadia.2020.1.074
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 74-83.
summary This paper investigates an interactive and adaptive control system for kinetic architectural applications with a distributed sensing and actuation network to control modular fiber-reinforced composite components. The aim of the project was to control the actuation of a foldable lightweight structure to generate programmatic changes. A server parses input commands and geometric feedback from embedded sensors and online data to drive physical actuation and generate a digital twin for real-time monitoring. Physical components are origami-like folding plates of glass and carbon-fiber-reinforced plastic, developed in parallel research. Accelerometer data is analyzed to determine component geometry. A component controller drives actuators to maintain or move towards desired positions. Touch sensors embedded within the material allow direct control, and an online user interface provides high-level kinematic goals to the system. A hierarchical control system parses various inputs and determines actuation based on safety protocols and prioritization algorithms. Development includes hardware and software to enable modular expansion. This research demonstrates strategies for embedded networks in interactive kinematic structures and opens the door for deeper investigations such as artificial intelligence in control algorithms, material computation, as well as real-time modeling and simulation of structural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_406
id acadia20_406
authors Duong, Eric; Vercoe, Garrett; Baharlou, Ehsan
year 2020
title Engelbart
doi https://doi.org/10.52842/conf.acadia.2020.1.406
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 406-415.
summary The internet has long been viewed as a cyberspace of free and collective information, allowing for an increase in the diversity of ideas and viewpoints available to the general public. However, critics argue that the emergence of personalization algorithms on social media and other internet platforms instead reduces information diversity by forming “filter bubbles"" of viewpoints similar to the user’s own. The adoption of these personalization algorithms is due in part to advancements in natural language processing, which allow for textual analysis at unprecedented scales. This paper aims to utilize natural language processing and architectural spatial principles to present social media from a collective viewpoint rather than a personalized one. To accomplish this, the paper introduces Engelbart, a data-driven agent-based system, where real-time Twitter conversations are visualized within a two-dimensional environment. This environment is interacted with by the artificial intelligence (AI) agent, Engelbart, which summarizes crowdsourced thoughts and feelings about current trending topics. The functionality of this web application comes from the natural language processing of thousands of tweets per minute throughout several layers of operations, including sentiment analysis and word embeddings. Presented as an understandable interface, it incorporates the values of cybernetics, cyberspace, agent-based modeling, and data ethics to show the potential for social media to become a more transparent space for collective discussion.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_156
id ecaade2020_156
authors Hemmerling, Marco and Maris, Simon
year 2020
title INTERCOM - A platform for collaborative design processes
doi https://doi.org/10.52842/conf.ecaade.2020.2.173
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 173-180
summary The INTERCOM project propounds a cloud-based collaboration platform for digital planning processes in architecture. The concept is based on an openBIM approach and ensures open access for all partners involved. At its core it provides IFC-based and model-related online tools for planning, communication and collaboration. The interaction with the model and the exchange with other project partners takes place in real-time via a model-related chat and BCF exports. In addition, the integration of e-learning modules (e.g. video tutorials, wikis, project documents) encourages problem solving through further education. Especially the integration of communication and collaboration tools is supposed to enhance the decision making throughout the design process and become a key factor for a successful and coordinated BIM process. Primarily INTERCOM has been developed as a prototype for teaching BIM in interdisciplinary teams. Subsequently, the application can also be adopted for professional practice. The paper evaluates previous experiences from BIM cloud teaching and discusses the conception and development of the proposed collaborative platform.
keywords architecture curriculum; didactics; building information modeling (BIM); collaborative design process; common data environment (CDE)
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2020_444
id caadria2020_444
authors Higgs, Baptiste and Doherty, Ben
year 2020
title Sanitary Sanity: Evaluating Privacy Preserving Machine Learning Methods for Post-occupancy Evaluation
doi https://doi.org/10.52842/conf.caadria.2020.2.697
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 697-706
summary Traditional post-occupancy evaluation (POE) of building performance has typically privileged physical building attributes over human behavioural data. This is due to a lack of capability and is especially the case for private spaces such as Sanitary Facilities (SFs). A privacy-preserving sensor-based system using Machine Learning (ML) was previously developed, however it was limited to basic body position classification. Yet, SF usage behaviour can be significantly more complex. This research accordingly builds on the aforementioned work to expand behavioural classifications using a sensor-based ML system. Specifically, the case study uses a GridEYE thermal sensor array, which is trained on a cubicle location within a workplace SF. A variety of ML algorithms are then evaluated on their behaviour-classifying ability. A detailed analysis of behaviour-classification performance is then provided. A system with greater fidelity is thus demonstrated, albeit hampered by imprecise behaviour definitions. Regardless, this contributes to the capability of the broader field of research that is investigating Evidence Based Design (EBD) by extending the ability to examine human behaviour, especially in private spaces. This further contributes to the growing body of work surrounding SF provision.
keywords EBD; Data; Internet of Things; Machine Learning; Post Occupancy Evaluation
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_29922 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002