CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id acadia20_564
id acadia20_564
authors Cutajar, Sacha; Costalonga Martins, Vanessa; van der Hoven, Christo; Baszyñski, Piotr; Dahy, Hanaa
year 2020
title Towards Modular Natural Fiber-Reinforced Polymer Architecture
doi https://doi.org/10.52842/conf.acadia.2020.1.564
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 564-573.
summary Driven by the ecological crisis looming over the 21st century, the construction sector must urgently seek alternative design solutions to current building practices. In the wake of emergent digital technologies and novel material strategies, this research proposes a lightweight architectural solution using natural fiber-reinforced polymers (NFRP), which elicit interest for their inherent renewability as compared to high-performance yarns. Two associated fabrication techniques are deployed: tailored fiber placement (TFP) and coreless filament winding (CFW), both favored for their additive efficiencies granted by strategic material placement. A hypothesis is formed, postulating that their combination can leverage the standalone complexities of molds and frames by integrating them as active structural elements. Consequently, the TFP enables the creation of a 2D stiffness-controlled preform to be bent into a permanent scaffold for winding rigid 3D fiber bodies via CFW. A proof of concept is generated via the small-scale prototyping and testing of a stool, with results yielding a design of 1 kg capable of carrying 100 times its weight. Laying the groundwork for a scaled-up architectural proposal, the prototype instigates alterations to the process, most notably the favoring of a modular global design and lapped preform technique. The research concludes with a discussion on the resulting techno-implications for automation, deployment, material life cycle, and aesthetics, rekindling optimism towards future sustainable practices.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_170p
id acadia20_170p
authors Pawlowska, Gosia
year 2020
title Viscous Catenary
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 170-175
summary Viscous Catenary is a free-form architectural glass structure that embeds material logic in a distributed system. Multi-curved panels are joined in a ‘catenary channel glass’ assembly, expressing the inherent behavior of the material at high temperatures. Float glass will typically achieve a level of viscosity at 1200°F (650°C), formed in a kiln by draping or “slumping. This hybrid fabrication process combines low-tech hardware and modern digital technologies. Glass panels were formed in a traditional kiln over a set of interchangeable waterjet-cut steel profiles or a repositionable tooling system. Parametric design in Grasshopper was essential to establish a discrete number of unique formwork elements and subdivide the overall geometry by panel size. In this case, each panel in the system was draped over four steel profiles. The formwork encourages a specific curvature in the glass, most precisely at the locations of folding. These moments of control allow the panels to align at their folds and join in an assembly by splice-lamination. Between the folds, the material remains free to shape itself, responding to its thickness, span, time, and temperature- into an undetermined “viscous catenary.” Selectively programming the geometry allows for a degree of material agency to remain in the system. This method differs from existing curved architectural glass, which would typically be pressed into a fully deterministic mold, leaving no opportunity for emergent morphologies. A pilot installation joined using transparent silicone adhesive achieved a height of 90cm with overlapping 30cm tall panels. Laser 3-d scanning between fabrication and assembly helped evaluate the fit between adjacent panels, identifying locations that required reinforcement. More research is needed to improve tolerances and overcome limitations in the adhesive before scaling up the fabrication system. Viscous Catenary succeeds in questioning the formal and structural potential of matter-driven curved architectural glass assemblies.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id cdrf2019_265
id cdrf2019_265
authors Yue Qi, Ruqing Zhong, Benjamin Kaiser, Long Nguyen,Hans Jakob Wagner, Alexander Verl, and Achim Menges
year 2020
title Working with Uncertainties: An Adaptive Fabrication Workflow for Bamboo Structures
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_25
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper presents and investigates a cyber-physical fabrication work-flow, which can respond to the deviations between built- and designed form in realtime with vision augmentation. We apply this method for large scale structures built from natural bamboo poles. Raw bamboo poles obtain evolutionarily optimized fibrous layouts ideally suitable for lightweight and sustainable building construction. Nevertheless, their intrinsically imprecise geometries pose a challenge for reliable, automated construction processes. Despite recent digital advancements, building with bamboo poles is still a labor-intensive task and restricted to building typologies where accuracy is of minor importance. The integration of structural bamboo poles with other building layers is often limited by tolerance issues at the interfaces, especially for large scale structures where deviations accumulate incrementally. To address these challenges, an adaptive fabrication process is developed, in which existing deviations can be compensated by changing the geometry of subsequent joints to iteratively correct the pose of further elements. A vision-based sensing system is employed to three-dimensionally scan the bamboo elements before and during construction. Computer vision algorithms are used to process and interpret the sensory data. The updated conditions are streamed to the computational model which computes tailor-made bending stiff joint geometries that can then be directly fabricated on-the-fly. In this paper, we contextualize our research and investigate the performance domains of the proposed workflow through initial fabrication tests. Several application scenarios are further proposed for full scale vision-augmented bamboo construction systems.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_100
id caadria2020_100
authors Hershcovich, Cheli, van Hout, RENÉ, Rinsky, Vladislav, Laufer, Michael and Grobman, Yasha J.
year 2020
title Insulating with Geometry - Employing Cellular Geometry to Increase the Thermal Performance of Building Facades
doi https://doi.org/10.52842/conf.caadria.2020.1.507
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 507-516
summary This paper presents the current stage of a study examining the potential of complex geometry concrete tiles to improve thermal performance in building envelopes. This stage focused on developing tile geometries and testing them using physical and digital CFD (Computational Fluid Dynamics) simulations. Tiles were developed taking two approaches: (i) developing variation from basic geometries (triangle, square, circle and trapezoid) and (ii) learning from natural envelopes. Following successful validation of experimental and numerical data, the designed tiles were tested using a digital simulation (Star-CCM+). The results show that for the examined configuration (flow perpendicular to the surface), a significant reduction of heat transfer rate occurs in most of the tested tiles. Furthermore, geometries that achieved the same thermal performance as the base-line flat tile saved up to 38 percent of the material.
keywords Complex Geometry; Microclimate; CFD
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_74
id acadia20_74
authors Bucklin, Oliver; Born, Larissa; Körner, Axel; Suzuki, Seiichi; Vasey, Lauren; T. Gresser, Götz; Knippers, Jan; Menges,
year 2020
title Embedded Sensing and Control
doi https://doi.org/10.52842/conf.acadia.2020.1.074
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 74-83.
summary This paper investigates an interactive and adaptive control system for kinetic architectural applications with a distributed sensing and actuation network to control modular fiber-reinforced composite components. The aim of the project was to control the actuation of a foldable lightweight structure to generate programmatic changes. A server parses input commands and geometric feedback from embedded sensors and online data to drive physical actuation and generate a digital twin for real-time monitoring. Physical components are origami-like folding plates of glass and carbon-fiber-reinforced plastic, developed in parallel research. Accelerometer data is analyzed to determine component geometry. A component controller drives actuators to maintain or move towards desired positions. Touch sensors embedded within the material allow direct control, and an online user interface provides high-level kinematic goals to the system. A hierarchical control system parses various inputs and determines actuation based on safety protocols and prioritization algorithms. Development includes hardware and software to enable modular expansion. This research demonstrates strategies for embedded networks in interactive kinematic structures and opens the door for deeper investigations such as artificial intelligence in control algorithms, material computation, as well as real-time modeling and simulation of structural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_071
id caadria2020_071
authors Carroll, Stan
year 2020
title Managing Risk in a Research-Based Practice as Projects Scale To Construction:A Case Study
doi https://doi.org/10.52842/conf.caadria.2020.1.065
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 65-74
summary Research-based architectural practices often experiment along the bleeding edge of the new frontier of design and include developing methodologies unfamiliar to the construction industry. Successfully implementing the resulting research methodologies to an architectural scale requires careful consideration of risk management within a Design-Bid-Build construction project. How a firm manages the risk when scaling a research conclusion to an architectural scale is an essential aspect of assuring the success of the project. These considerations are particularly acute within firms whose research involves convoluted geometry. In the field of doubly-curved geometric material systems, the level of precision required to manage professional risk is commensurate with the level of geometric complexity. Adopting the mindset of a Medieval master mason's process within the context of twenty-first-century materials and processes can be a method toward a successful project. By performing well thought-out transfer procedures of digital data, resolving the fundamental challenges of fabrication, and including structural analysis as a part of the early design phases, experimental architectural expressions can be realized without extra financial risk to the designer.
keywords Risk Management; Research-Based Practice; Complex Geometry; Digital Fabrication; Computational Design
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2020_203
id sigradi2020_203
authors Chiarella, Mauro; Gronda, Ma. Luciana; Veizaga, Martín W.
year 2020
title FLEXO.IN-FORM. Laminary envelopes to active flexion through geometric-material optimization processes
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 203-208
summary Flexo.In-Form. is a prototype derived from an experimental exercise to verify the structural effort of active flexion. Bending behavior is used as a design tool applied to structures that base their geometry on the elastic deformation of flat elements. Through "Integrative Processes" and a "Performance-Oriented Design Approach", the operational relationship between active mechanical mechanisms, material performance and geometric design has been enhanced. The proposed geometric and material optimization process extends the experiences with physical models of complex shapes through computational numerical calculation and its possibilities of simulation and digital evaluation.
keywords Performance, Form-finding, Parametric Design, Physical Simulation, Digital Manufacturing
series SIGraDi
email
last changed 2021/07/16 11:48

_id acadia20_154p
id acadia20_154p
authors Josephson, Alex; Friedman, Jonathan; Salance, Benjamin; Vasyliv, Ivan; Melnichuk, Tim
year 2020
title Gusto: Rationalizing Computational Masonry Design
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 154-159
summary Gusto 501 is a multi-level Infill Building on the footprint of an old car garage. Surrounded by an overpass and former factories, the restaurant and event spaces take the form of a ‘Hyper garage’ as a nod to its urban context. The interior is punctuated with standard terracotta blocks formed to create an intricate play of shadows during the day and embedded with LEDs to provide atmospheric illumination at night. The client's vision, our narrative, and the program demanded an innovative use of the primal material: terracotta. The scale of the project required the use of 3,700 blocks. Within the array wrapped around a 50ft tall interior volume, each block needed to be formed and sequenced uniquely to maintain structural integrity and interface with building systems, and express the sculptural qualities our team had designed. Standard approaches to the masonry could not achieve the effects our team was striving for - we had to develop our ground-up process to manufacture and install mass-customized masonry. The design process involved an algorithmic approach to a series of cuts and geometric manipulations to the blocks that allowed for near-endless combinations/configurations to create a dynamic interior facade system. Partisans, partnering with a terracotta block manufacturer, a local mason, and a masonry engineer, pursued simplifying production using wire cutter systems. Digital and physical mock-ups were then used to create a robust library of parameterized design criteria that optimized corbelling, grout thickness, weight, and fabrication complexity. Working sets of drawings were automated through a fully integrated BIM model, simplifying and speeding up installation. The challenge of marrying these processes with the physical realities of installation required another level of collaboration that included the masons themselves and the electricians who would eventually combine lighting systems into the sculpted block array.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id ijac202220201
id ijac202220201
authors Horvath; Anca-Simona
year 2022
title How we talk(ed) about it: Ways of speaking about computational architecture
source International Journal of Architectural Computing 2022, Vol. 20 - no. 2, pp. 150–175
summary If we understand architecture as a three-part system formed by the building, its image, or drawings and imagesdescribing buildings, and the critical discourse around architecture, then the texts or ways of speaking aboutarchitecture play a key role in understanding the field and its development. By analysing a corpus of around 4.6million words from texts written between 2005 and 2020 that form a part of critical discourse in computational architecture (understood as the result of the intense digitalization of the field), this paper aims tomap ways of speaking about computational architecture. This contributes to architectural theory and mighthelp gain a better understanding of the evolution of the digitalization of construction in general. Findings showthat computational architecture is surrounded by a specific way of speaking, hybridized with words fromfields such as biology, neuroscience, arts and humanities, and engineering. While some topics such as‘sustainability’ or ‘biology’ come up consistently in the discourse, others, such as ‘people’ or ‘human’, haveperiods when they are more and less popular. After highlighting open research questions, the paperconcludes by presenting a map of periodic and recurring topics in ways of speaking about computationalarchitecture over the last 15 years, thus tracking and documenting long-term trends, and illuminating patternsin the broader field of digital construction.
keywords Architectural design, computational architecture, design theory, digital architecture, digital construction, natural language processing
series journal
last changed 2024/04/17 14:29

_id ijac202018206
id ijac202018206
authors Mitterberger, Daniela and Tiziano Derme
year 2020
title Digital soil: Robotically 3D-printed granular bio-composites
source International Journal of Architectural Computing vol. 18 - no. 2, 194-211
summary Organic granular materials offer a valid alternative for non-biodegradable composites widely adopted in building construction and digital fabrication. Despite the need to find alternatives to fuel-based solutions, current material research in architecture mostly supports strategies that favour predictable, durable and homogeneous solutions. Materials such as soil, due to their physical properties and volatile nature, present new challenges and potentials to change the way we manufacture, built and integrate material systems and environmental factors into the design process. This article proposes a novel fabrication framework that combines high-resolution three-dimensional- printed biodegradable materials with a novel robotic-additive manufacturing process for soil structures. Furthermore, the research reflects on concepts such as affordance and tolerance within the field of digital fabrication, especially in regards to bio-materials and robotic fabrication. Soil as a building material has a long tradition. New developments in earth construction show how earthen buildings can create novel, adaptive and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough geometrical articulations. This research proposes to use a robotic binder-jetting process that creates novel organic bio-composites to overcome such limitations of common earth constructions. In addition, this article shows how biological polymers, such as polysaccharides-based hydrogels, can be used as sustainable, biodegradable binding agents for soil aggregates. This article is divided into four main sections: architecture and affordance; tolerance versus precision; water-based binders; and robotic fabrication parameters. Digital Soil envisions a shift in the design practice and digital fabrication that builds on methods for tolerance handling. In this context, material and geometrical properties such as material porosity, hydraulic conductivity and natural evaporation rate affect the architectural resolution, introducing a design process driven by matter. Digital Soil shows the potential of a fully reversible biodegradable manufacturing process for load-bearing architectural elements, opening up new fields of application for sustainable material systems that can enhance the ecological potential of architectural construction.
keywords Robotic fabrication, adaptive materials, water-based fabrication, affordance, organic matter, additive manufacturing
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2020_126
id caadria2020_126
authors Hsiao, Chi-Fu, Lee, Ching-Han, Chen, Chun-Yen and Chang, Teng-Wen
year 2020
title A Co-existing Interactive Approach to Digital Fabrication Workflow
doi https://doi.org/10.52842/conf.caadria.2020.1.105
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 105-114
summary In recent years, digital fabrication projects have explored how to best present complex spatial patterns. These patterns are generated by a series of function clusters and need to be separated into reasonable working sequences for workers. In the stage between design and fabrication, designers and workers typically spend considerable time communicating with each other and prototyping models in order to understand the complex geometry and joint methods of fabrication works. Through the potential of mixed reality technology, this paper proposes a novel form of co-existing interactive workflow that helps designers understand the morphing status of material composition and assists workers in achieving desired results. We establish this co-existing workflow mechanism as an interface between design and reality that includes a HoloLens display, a parametric algorithm, and gesture control identification. This paper challenges the flexibility between the virtual and reality and the interaction between precise parameters and natural gestures within an automation process.
keywords Co-existing interactive workflow; Digital fabrication; HoloLens; Digital twin; Prototype
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia20_108p
id acadia20_108p
authors Akbarzadeh, Masoud; Ghomi, Ali Tabatabaie; Bolhassani, Mohammad; Akbari, Mostafa; Seyedahmadian, Alireza; Papalexiou, Konstantinos
year 2020
title Saltatur
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 108-113.
summary The Saltatur (Dancer in Latin) demonstrates innovative research in the design and fabrication of a prefab structure consisting of spatial concrete nodes assembled in a compression-only configuration. The compression-only body is kept in equilibrium using the post-tensioning steel rods at the top and the bottom of the structure, supporting an ultra-thin glass structure on its top. A node-based assembly was considered as a method of construction. An innovative detailing was developed that allows locking each member in its exact location in the body, obviating the need for a particular assembly sequence. A bespoke steel connection transfers the tensile forces between the concrete members effectively. Achieving a high level of efficiency in utilizing concrete for spatial systems requires a robust and powerful structural design and fabrication approach that has been meticulously exhibited in this project. The structural form of the project was developed using a three-dimensional geometry-based structural design method known as 3D Graphic Statics with precise control over the magnitude of the lateral forces in the system. The entire concrete body of the structure is held in compression by the tension ties at the top and bottom of the structure with no horizontal reactions at the supports. This particular internal distribution of forces in the form of the compression-only body reduces the bending moment in the system and, therefore, the required mass to span such a distance.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_297
id sigradi2020_297
authors Arboleda Pardo, Juan Gabriel; García-Alvarado, Rodrigo; Martínez Rocamora, Alejandro
year 2020
title BIM-modeling and programming of curved concrete walls for 3D-printed construction
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 297-305
summary This article presents the parametric design and modeling in BIM of curved walls for 3d-printed construction in concrete, seeking to manage the reduction of materials and construction execution times, and enhance its architectural expression. The process described here is structured in the following phases: (i) conceptual preliminary design exploration, defining formal parameters in Revit, (ii) parametric modeling with Dynamo and Revit, (iii) integration of structural validation and printing programming of the robotic arm, and examples of execution with 3D-printed construction.
keywords BIM, Parametric programming, 3D-printed Construction, Curved wall, Digital fabrication
series SIGraDi
email
last changed 2021/07/16 11:49

_id sigradi2020_260
id sigradi2020_260
authors Bhattacharya, Maharshi; Jung, Francisco
year 2020
title Multi-Mission Space Exploration Vehicle (MMSEV) Nosecone Design Optimization
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 260-266
summary This paper addresses ergonomic drawbacks in NASA’s modular Multi-Mission Space Exploration Vehicle’s (MMSEV) latest prototype, 2B’s nosecone, to propose new iteration based on considerations such as mass minimization, visibility maximization, and structural integrity. With 2B as a benchmark, and using computational tools typically used in the AEC industry to carry out FEA analysis, comparisons are made with potential design changes. The numerical and visual data such as weight, and stress distribution, provided by the benchmark analysis, served as metrics for comparison and redesign. In turn, this design development exercise attempts to bring together the different design approaches to design, held by human- factors designers and structural engineers.
keywords Form, Optimization, Finite Element Analysis, Space-Exploration Vehicle, Stress-Analysis
series SIGraDi
email
last changed 2021/07/16 11:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_954592 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002