CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id 2f0b
authors Kurzweil, R.
year 2000
title The Age of Spiritual Machines: When Computers Exceed Human Intelligence
source Penguin Books, London
summary How much do we humans enjoy our current status as the most intelligent beings on earth? Enough to try to stop our own inventions from surpassing us in smarts? If so, we'd better pull the plug right now, because if Ray Kurzweil is right, we've only got until about 2020 before computers outpace the human brain in computational power. Kurzweil, artificial intelligence expert and author of The Age of Intelligent Machines, shows that technological evolution moves at an exponential pace. Further, he asserts, in a sort of swirling postulate, time speeds up as order increases, and vice versa. He calls this the "Law of Time and Chaos," and it means that although entropy is slowing the stream of time down for the universe overall, and thus vastly increasing the amount of time between major events, in the eddy of technological evolution the exact opposite is happening, and events will soon be coming faster and more furiously. This means that we'd better figure out how to deal with conscious machines as soon as possible--they'll soon not only be able to beat us at chess, they'll likely demand civil rights, and they may at last realize the very human dream of immortality. The Age of Spiritual Machines is compelling and accessible, and not necessarily best read from front to back--it's less heavily historical if you jump around (Kurzweil encourages this). Much of the content of the book lays the groundwork to justify Kurzweil's timeline, providing an engaging primer on the philosophical and technological ideas behind the study of consciousness. Instead of being a gee-whiz futurist manifesto, Spiritual Machines reads like a history of the future, without too much science fiction dystopianism. Instead, Kurzweil shows us the logical outgrowths of current trends, with all their attendant possibilities. This is the book we'll turn to when our computers
series other
last changed 2003/04/23 15:14

_id caadria2020_000
id caadria2020_000
authors D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.)
year 2020
title CAADRIA 2020: RE:Anthropocene, Volume 1
doi https://doi.org/10.52842/conf.caadria.2020.1
source RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, 898 p.
summary What if we are already in the Anthropocene epoch where the function of the Earth system is being impacted by human activities? What if our actions indeed are significant enough to have a critical force on the Earth as a system? The term Anthropocene (the Age of Humans) has gained increasing recognition as a description of a crucial geological stage of our planet as we face the consequences of our own events on the earth's ecosystem. While we are beginning to address the predominant challenges of sustainability and ecology, the environments we built have also shaped our behaviors. To celebrate CAADRIA's 25th Anniversary, we challenge ourselves with these questions, asking what we want our future to look like in the next 25, 50, or even 100 years from now? If human creations are substantial enough to start a new geological epoch, what does this imply for our explorations of the realm of computational design and how will advanced technologies shape our future? With the theme of RE: Anthropocene, we ask our contributors to REgard this new geological age as the main meaningful site for exploration into the future, REthink what our planet could become, REvisit our actions and behaviors to foster the REsponsibilities for the planet existence, and perhaps & importantly, REspond to whatever magnitudes happen to the built-environments and other planetary beings.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2020_001
id caadria2020_001
authors D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.)
year 2020
title CAADRIA 2020: RE:Anthropocene, Volume 2
doi https://doi.org/10.52842/conf.caadria.2020.2
source RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, 734 p.
summary What if we are already in the Anthropocene epoch where the function of the Earth system is being impacted by human activities? What if our actions indeed are significant enough to have a critical force on the Earth as a system? The term Anthropocene (the Age of Humans) has gained increasing recognition as a description of a crucial geological stage of our planet as we face the consequences of our own events on the earth's ecosystem. While we are beginning to address the predominant challenges of sustainability and ecology, the environments we built have also shaped our behaviors. To celebrate CAADRIA's 25th Anniversary, we challenge ourselves with these questions, asking what we want our future to look like in the next 25, 50, or even 100 years from now? If human creations are substantial enough to start a new geological epoch, what does this imply for our explorations of the realm of computational design and how will advanced technologies shape our future? With the theme of RE: Anthropocene, we ask our contributors to REgard this new geological age as the main meaningful site for exploration into the future, REthink what our planet could become, REvisit our actions and behaviors to foster the REsponsibilities for the planet existence, and perhaps & importantly, REspond to whatever magnitudes happen to the built-environments and other planetary beings.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2020_375
id caadria2020_375
authors Kalo, Ammar, Tracy, Kenneth and Tam, Mark
year 2020
title Robotic Sand Carving - Machining Techniques Derived from a Traditional Balinese Craft
doi https://doi.org/10.52842/conf.caadria.2020.2.443
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 443-452
summary This paper presents research aimed at translating Ukiran Pasir Melela, traditional Balinese sand carving, into a new robotic-enabled framework for rapidly carving stiff but uncured cement sand blocks to create free-form and architecturally scalable unique volumetric elements. The research aims to reconsider vernacular materials and craft through their integration robotic manufacturing processes and how this activity can provide localized, low energy manufacturing solutions for building in the Anthropocene.Balinese sand carving shows potential advantages over current, and rather environmentally damaging, machining process primarily using soft materials state to make deep, smooth cuts into material with little torque. Transferring this manual and low-impact craft to robotic-enabled fabrication leverages heuristic knowledge developed over decades and opens possibilities for expanding and transforming these capabilities to increase the variability of potential future applications.
keywords Robotic Fabrication; Computational Design; Traditional Craft
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_698
id acadia20_698
authors Kimm, Geoff; Burry, Mark
year 2020
title Steering into the Skid
doi https://doi.org/10.52842/conf.acadia.2020.1.698
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 698-707.
summary What if any perceived risks of lost authorship and artistic control posed by a wholesale embrace of artificial intelligence by the architectural profession were instead opportunities? AI’s potential to automate design has been pursued for over 50 years, yet aspirations of early researchers are not fully realized. Nonetheless, AI’s advances continue to be rapid; it is an increasingly viable adjunct to architectural practice, and there are fundamental reasons for why the perceived “risks” of AI cannot be dismissed lightly. Architects’ professional role at the intersection of social issues and technology, however, may allow them to avoid the obsolescence faced by other roles. To do this, we propose architects responsively arbitrage an ever-changing gap between maturing AI and mutable social expectations— arbitrage in the sense of seeking to exercise individual judgment to negotiate between diverse considerations and capacities for mutual advantage. Rather than feel threatened, evolving architectural practice can augment an expanded design process to generate and embed new subtleties and expectations that society may judge contemporary AI alone as being unable to achieve. Although there can be no road map to the future of AI in architecture, historical misevaluations of machines and our own human capabilities inhibit the intertwined, synergistic, and symbiotic union with AI needed to avoid a zero-sum confrontation. To act myopically, defensively, or not at all risks straitjacketing future definitions of what it means to be an architect, designer, or even a professionally unaligned creative and productive human being.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_196
id ecaade2020_196
authors Paiva Ponzio, Angelica, Prazeres Veloso de Souza, Leonardo, Mateus Schulz, Victor and Lasso, Cindy
year 2020
title Digital Understandings in the Construction of Knowledge - Report of experiences in contemporary architectural design teaching
doi https://doi.org/10.52842/conf.ecaade.2020.1.675
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 675-684
summary As part of an ongoing research on the study of digital tools envisioning innovation in the design process, this article intends to demonstrate how analogical and digital design thinking techniques can improve and expand the range of creative methodologies in the context of an undergraduate architectural design studio. The approach presented builds on the improvement of a theoretical-didactic model during three strategies, each aiming at different steps of the design process. The first one explores analog design thinking techniques on the initial concept decisions, the following demonstrates the joint use of parametric and BIM tools as an alternative resource for generating complex forms, and the last one presents BIM technology as a pedagogical instrument for learning a constructive system. Thus, besides presenting the methods, instruments, products, and results generated, this paper will also discuss the gains and difficulties faced, appointing a new approach to undergo in the future.
keywords Digital Design process; Architectural design teaching; Design thinking; Parametricism
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2020_138
id ecaade2020_138
authors Patel, Sayjel Vijay, Tchakerian, Raffi, Lemos Morais, Renata, Zhang, Jie and Cropper, Simon
year 2020
title The Emoting City - Designing feeling and artificial empathy in mediated environments
doi https://doi.org/10.52842/conf.ecaade.2020.2.261
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 261-270
summary This paper presents a theoretical blueprint for implementing artificial empathy into the built environment. Transdisciplinary design principles have oriented the creation of a new model for autonomous environments integrating psychology, architecture, digital media, affective computing and interactive UX design. 'The Emoting City', an interactive installation presented at the 2019 Shenzhen Bi-City Biennale of Urbanism/Architecture, is presented as a first step to explore how to engage AI-driven sensing by integrating human perception, cognition and behaviour in a real-world scenario. The approach described encompasses two main elements: embedded cyberception and responsive surfaces. Its human-AI interface enables new modes of blended interaction that are conducive to self-empathy and insight. It brings forth a new proposition for the development of sensing systems that go beyond social robotics into the field of artificial empathy. The installation innovates in the design of seamless affective computing that combines 'alloplastic' and 'autoplastic' architectures. We believe that our research signals the emergence of a potential revolution in responsive environments, offering a glimpse into the possibility of designing intelligent spaces with the ability to sense, inform and respond to human emotional states in ways that promote personal, cultural and social evolution.
keywords Artificial Intelligence; Responsive Architecture; Affective Computation; Human-AI Interfaces; Artificial Empathy
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2020_254
id caadria2020_254
authors Pei, Wanyu, LO, TianTian and Guo, Xiangmin
year 2020
title A Biofeedback Process: Detecting Architectural Space with the Integration of Emotion Recognition and Eye-tracking Technology
doi https://doi.org/10.52842/conf.caadria.2020.2.263
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 263-272
summary This paper coincides with the conference theme that people have gradually become a vital force influencing the environmental system. In the future, it is necessary to study the influence of not only the built environment on people but also people's feedback on environmental design. This study explores the ‎processes of interactive design using both emotion recognition and eye-tracking of users. By putting on wearable devices to roam and perceive in a virtual reality space, the physiological data of the users are collected in real-time and used to analyze their emotional responses and visual attention to the spaces. This method will provide an auxiliary way for non-architectural professional users to participate in architectural space design. At present, there is a lack of research on the comprehensive application of eye movement knowledge and emotional feedback in architectural space design. This integration will help professional designers to optimize the design of architectural space. For this paper, we review existing research and proposing an interactive design workflow that integrates eye tracking and emotion recognition. This workflow will help with the next stage of research to understand the design of a new International School of Design building.
keywords Perception detection; Architectural space environment; Interactive design; Virtual reality
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2020_053
id ecaade2020_053
authors Ren, Yue, Chu, Jie and Zheng, Hao
year 2020
title Dynamic Symbiont - An Interactive Urban Design Method Combining Swarm Intelligence and Human Decisions
doi https://doi.org/10.52842/conf.ecaade.2020.1.383
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 383-392
summary Can a virtual city game be built by both the public and computer-based on real-site data? In the current process of deepening global connectivity, requirements for an effective urban design are no longer limited to functions or aesthetics, but a smart, dynamic complex with multi-interactions of data, group behaviours, and physical space. This paper introduces the logic of swarm intelligence and particle system for proposing a new urban design methodology. The platforms range from simulations that quantify the impact of the disruptive interventions of city activities to communicable collaboration between different users in a UI system, which creates virtual connections between optimized urbanscape and users. In the design system, based on the context data, the computer firstly simulates and optimizes the existing 2D activity joints between the people and analyzed the current spatial connection nodes into certain design rules. Through optimal programming for spatial connection and data iterations, the activity connection structures in the second simulation are abstracted into a set of interactive 3D topographic. The final data-visualization results are presented as a co-building megacity in a virtual construction game. Users can choose the virtual building unit types and intuitively influence the future urbanscape decision through virtual construction.
keywords Swarm Intelligence; Particle System; Digital Simulation; Human-Machine Interaction; Data Visualization
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_445
id ecaade2020_445
authors Spiegelhalter, Thomas, Andia, Alfredo, Levente, Juhasz and Namuduri, Srikanth
year 2020
title Part 1: The Integrated Decision Support System - Generative and synthetic biological design imaginations for the Miami bay area
doi https://doi.org/10.52842/conf.ecaade.2020.2.011
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 11-20
summary In less than 150 years our carbon society transformed the planet. Today more than 50% of ecologies in the world are determined by unsustainable industrialization processes. The latest IPCC reports show that we are quickly arriving at points of no return in the warming of our planet. We cannot afford to continue in the same direction, we need a new imagination. As part of an E.U.-US funded $1.9 million research project we have been working on multiple projects for the future of the Miami islands since 2018:1. We developed a generative GIS-BIM based Python API for mapping and optimization of carbon-neutral design workflows. It includes genetic design combinatorics with intuitive graphical Dynamo-Python-Grasshopper programming with experimental design results. 2. We worked on a series of design research for the Miami Bay that envisions islands, living shorelines, programmable soils, and infrastructures that grow by themselves using synthetic biology.
keywords Automated Workflows, Synthetic Biology, Artificial Intelligence, Architecture, Sea-level Rise
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2020_499
id ecaade2020_499
authors Ashour, Ziad and Yan, Wei
year 2020
title BIM-Powered Augmented Reality for Advancing Human-Building Interaction
doi https://doi.org/10.52842/conf.ecaade.2020.1.169
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 169-178
summary The shift from computer-aided design (CAD) to building information modeling (BIM) has made the adoption of augmented reality (AR) promising in the field of architecture, engineering and construction. Despite the potential of AR in this field, the industry and professionals have still not fully adopted it due to registration and tracking limitations and visual occlusions in dynamic environments. We propose our first prototype (BIMxAR), which utilizes existing buildings' semantically rich BIM models and contextually aligns geometrical and non-geometrical information with the physical buildings. The proposed prototype aims to solve registration and tracking issues in dynamic environments by utilizing tracking and motion sensors already available in many mobile phones and tablets. The experiment results indicate that the system can support BIM and physical building registration in outdoor and part of indoor environments, but cannot maintain accurate alignment indoor when relying only on a device's motion sensors. Therefore, additional computer vision and AI (deep learning) functions need to be integrated into the system to enhance AR model registration in the future.
keywords Augmented Reality; BIM; BIM-enabled AR; GPS; Human-Building Interactions; Education
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_350
id acadia20_350
authors Atanasova, Lidia; Mitterberger, Daniela; Sandy, Timothy; Gramazio, Fabio; Kohler, Matthias; Dörfler, Kathrin
year 2020
title Prototype As Artefact
doi https://doi.org/10.52842/conf.acadia.2020.1.350
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 350-359.
summary In digital design-to-fabrication workflows in architecture, in which digitally controlled machines perform complex fabrication tasks, all design decisions are typically made before production. In such processes, the formal definition of the final shape is explicitly inscribed into the design model by means of corresponding step-by-step machine instructions. The increasing use of augmented reality (AR) technologies for digital fabrication workflows, in which people are instructed to carry out complex fabrication tasks via AR interfaces, creates an opportunity to question and adjust the level of detail and the nature of such explicit formal definitions. People’s cognitive abilities could be leveraged to integrate explicit machine intelligence with implicit human knowledge and creativity, and thus to open up digital fabrication to intuitive and spontaneous design decisions during the building process. To address this question, this paper introduces open-ended Prototype-as-Artefact fabrication workflows that examine the possibilities of designing and creative choices while building in a human-robot collaborative setting. It describes the collaborative assembly of a complex timber structure with alternating building actions by two people and a collaborative robot, interfacing via a mobile device with object tracking and AR visualization functions. The spatial timber assembly being constructed follows a predefined grammar but is not planned at the beginning of the process; it is instead designed during fabrication. Prototype-as-Artefact thus serves as a case study to probe the potential of both intuitive and rational aspects of building and to create new collaborative work processes between humans and machines.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_115
id ecaade2020_115
authors Azambuja Varela, Pedro and Sousa, José Pedro
year 2020
title Liquid Stereotomy - the Tamandua Vault
doi https://doi.org/10.52842/conf.ecaade.2020.2.361
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 361-370
summary A renewed interest in stereotomy, narrowly entwined with digital technologies, has allowed for the recovery and proposal of new techniques and expressions in this building approach. A new classification scheme for stereotomy research allows for the framing of various aspects related to this discipline, including a newly developed fabrication system specially tailored for the wedge-shaped voussoirs. This fabrication system is based in a reusable mould which may assume an infinite number of geometries, avoiding the wasteful discarding of material found in subtractive strategies. The usage of a mould also allows for more sustainable materials to be employed, catering to current challenges. The strategies subject for demonstration in this project rely on various bottom-up approaches, which involve particle physic simulations such as a hanging model to compute an optimal stereo-funicular shape, or spring mechanisms to find optimal coplanar solutions. The proposed mechanisms work in a parametric algorithmically environment, able to handle dozens of uniquely different voussoirs at the same time. Together with the automatic translation to fabrication data, the proposed shape complexity would hardly be built with classic tools. The Tamandua Vault project has the purpose of exemplifying the possibilities of an updated stereotomy, while its design demonstrates current strategies that may be employed in the resolution of complex geometrical problems and bespoke fabrication of construction components for stereotomy.
keywords stereotomy; digital design; digital fabrication; compression; sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_233
id caadria2020_233
authors Bar-Sinai, Karen Lee, Shaked, Tom and Sprecher, Aaron
year 2020
title Sensibility at Large - A Post-Anthropocene Vision for Architectural Landscape Editing
doi https://doi.org/10.52842/conf.caadria.2020.2.223
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
summary The irreversible imprint of humankind on Earth calls for revisiting current construction practices. This paper forwards a vision for post-Anthropocene, large-scale, architectural, and landscape construction. This vision relates to transforming natural terrains into architecture using on-site robotic tools and enabling greater sustainability through increased sensibility. Despite advancements in large-scale digital fabrication in architecture, the field still mainly focuses on the production of objects. The proposed vision aims to advance theory and practice towards territorial scale digital fabrication of environments. Three notions are proposed: material-aware construction, large-scale customization, and integrated fabrication. These aspects are demonstrated through research and teaching projects. Using scale models, they explore the deployment of robotic tools toward reforming, stabilizing, and reconstituting soil in an architectural context. Together, they propose a theoretical ground for in situ digital fabrication for a new era, relinking architecture to the terrains upon which it is formed.
keywords Digital Fabrication; territorial scale; on-site robotics; geomaterials; computational design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_047
id ecaade2020_047
authors Brown, Lachlan, Yip, Michael, Gardner, Nicole, Haeusler, M. Hank, Khean, Nariddh, Zavoleas, Yannis and Ramos, Cristina
year 2020
title Drawing Recognition - Integrating Machine Learning Systems into Architectural Design Workflows
doi https://doi.org/10.52842/conf.ecaade.2020.2.289
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 289-298
summary Machine Learning (ML) has valuable applications that are yet to be proliferated in the AEC industry. Yet, ML offers arguably significant new ways to produce and assist design. However, ML tools are too often out of the reach of designers, severely limiting opportunities to improve the methods by which designers design. To address this and to optimise the practices of designers, the research aims to create a ML tool that can be integrated into architectural design workflows. Thus, this research investigates how ML can be used to universally move BIM data across various design platforms through the development of a convolutional neural network (CNN) for the recognition and labelling of rooms within floor plan images of multi-residential apartments. The effects of this computation and thinking shift will have meaningful impacts on future practices enveloping all major aspects of our built environment from designing, to construction to management.
keywords machine learning; convolutional neural networks; labelling and classification; design recognition
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_412
id caadria2020_412
authors Capunaman, Ozguc Bertug
year 2020
title CAM as a Tool for Creative Expression - Informing Digital Fabrication through Human Interaction
doi https://doi.org/10.52842/conf.caadria.2020.1.243
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 243-252
summary Contemporary digital design and fabrication tools often present deterministic and pre-programmed workflows. This limits the potential for developing a deeper understanding of materials within the process. This paper presents an interactive and adaptive design-fabrication workflow where the user can actively take turns in the fabrication process. The proposed experimental setup utilizes paste extrusion additive manufacturing in tandem with real-time control of an industrial robotic arm. By incorporating a computer-vision based feedback loop, it captures momentary changes in the fabricated artifact introduced by the users to inform the digital representation. Using the updated digital representation, the proposed system can offer simple design hypotheses for the user to evaluate and adapt future toolpaths accordingly. This paper presents the development of the experimental setup and delineates critical concepts and their motivation.
keywords Computer-Aided Design (CAD) and Manufacturing (CAM); Human Computer Interaction; 3D Printing; Interactive Digital Fabrication; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_017
id ecaade2020_017
authors Chan, Yick Hin Edwin and Spaeth, A. Benjamin
year 2020
title Architectural Visualisation with Conditional Generative Adversarial Networks (cGAN). - What machines read in architectural sketches.
doi https://doi.org/10.52842/conf.ecaade.2020.2.299
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 299-308
summary As a form of visual reasoning, sketching is a human cognitive activity instrumental to architectural design. In the process of sketching, abstract sketches invoke new mental imageries and subsequently lead to new sketches. This iterative transformation is repeated until the final design emerges. Artificial Intelligence and Deep Neural Networks have been developed to imitate human cognitive processes. Amongst these networks, the Conditional Generative Adversarial Network (cGAN) has been developed for image-to-image translation and is able to generate realistic images from abstract sketches. To mimic the cyclic process of abstracting and imaging in architectural concept design, a Cyclic-cGAN that consists of two cGANs is proposed in this paper. The first cGAN transforms sketches to images, while the second from images to sketches. The training of the Cyclic-cGAN is presented and its performance illustrated by using two sketches from well-known architects, and two from architecture students. The results show that the proposed Cyclic-cGAN can emulate architects' mode of visual reasoning through sketching. This novel approach of utilising deep neural networks may open the door for further development of Artificial Intelligence in assisting architects in conceptual design.
keywords visual cognition; design computation; machine learning; artificial intelligence
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2020_082
id caadria2020_082
authors Cheng, Celine and Pelosi, Antony
year 2020
title Connecting Timber Sheet Materials to Create a Self-Supporting Structure using Robotic Fabrication and Computational Tools
doi https://doi.org/10.52842/conf.caadria.2020.1.085
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 85-94
summary The research developed in this paper is the workflow to create a self-supporting structure from sheet materials using robotic fabrication and computational tools. This research focuses on timber sheet materials, as timber is a material that can be altered in a variety of ways. Japanese timber connections were a strong influence for this research, due to its prolonged lifespan and sustainable advantages. In the past, timber fabrication techniques have been limited due to design limitations. This research explored how current technology, specifically parametric software combined with robotic fabrication, can create timber connections to connect sheet materials at different angles. This method was utilised to repurpose the concept of sheet materials towards a complex structure, which adopted the idea of mass customisation over mass production. This can help reshape the future of architecture through the use of advancing technology and sustainable assembly techniques using timber to timber joints.
keywords Architecture; Robotic Fabrication; Timber; Parametric Design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_090
id caadria2020_090
authors Crolla, Kristof and Goepel, Garvin
year 2020
title Designing with Uncertainty - Objectile vibrancy in the TOROO bamboo pavilion
doi https://doi.org/10.52842/conf.caadria.2020.2.507
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 507-516
summary This paper challenges digital preoccupations with precision and control and questions the status of tolerance, allowance and error in post-digital, human-centred architectural production. It uses the participatory action research design-and-build project TOROO, a light-weight bending-active bamboo shell structure, built in Hsinchu, Taiwan, in June 2019, as a demonstrator project to discuss how protean digital design diagrams, named 'vibrant objectiles,' are capable of productively absorbing serendipity throughout project crystallisation processes, increasing designer agency in challenging construction contexts with high degrees of unpredictability. The demonstrator project is then used to discuss future research directions that were exposed by the project. Finally, the applicability of working with 'vibrant objectiles' is discussed beyond its local project use. Common characteristics and requirements are extracted, highlighting project setup preconditions for which the scope covered by the architect needs to be both broadened and relaxed to allow for feedback from design implementation phases.
keywords Post-digital; Bamboo; Bending-active shell structures; Uncertainty; Objectile
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_409639 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002