CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id ecaade2020_432
id ecaade2020_432
authors Fragkia, Vasiliki and Worre Foged, Isak
year 2020
title Methods for the Prediction and Specification of Functionally Graded Multi-Grain Responsive Timber Composites
doi https://doi.org/10.52842/conf.ecaade.2020.2.585
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 585-594
summary The paper presents design-integrated methods for high-resolution specification and prediction of functionally graded wood-based thermal responsive composites, using machine learning. The objective is the development of new circular design workflow, employing robotic fabrication, in order to predict fabrication files linked to material performance and design requirements, focused on application for intrinsic responsive and adaptive architectural surfaces. Through an experimental case study, the paper explores how machine learning can form a predictive design framework where low-resolution data can solve material systems at high resolution. The experimental computational and prototyping studies show that the presented image-based machine learning method can be adopted and adapted across various stages and scales of architectural design and fabrication. This in turn allows for a design-per-requirement approach that optimizes material distribution and promotes material economy.
keywords material specification; responsive timber composites; machine learning; robotic fabrication; building envelopes
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id acadia20_456
id acadia20_456
authors Alali, Jiries; Negar Kalantar, Dr.; Borhani, Alireza
year 2020
title Casting on a Dump
doi https://doi.org/10.52842/conf.acadia.2020.1.456
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 456-463.
summary “Casting on a dump” focuses on finding accessible, low-tech fabrication methodologies that allow for the construction of parametrically designed nonstandard modular cast panels. Such an approach adopts a computational design framework using a single low-tech and low-energy fabrication device to create nonrepetitive volumetric panels cast in situ. The design input for these panels is derived from design preferences and environmental control data. The technique expands upon easy to fabricate and cast methods, targeting less-developed logistical settings worldwide, and thus responding to imminent needs related to climate, available resources, and the economy.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_240
id ecaade2020_240
authors Bouza, Hayley and Aºut, Serdar
year 2020
title Advancing Reed-Based Architecture through Circular Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2020.1.117
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 117-126
summary This paper presents a completed research project that proposes a new approach for creating circular buildings through the use of biodegradable, in situ resources with the help of computational design and digital fabrication technologies. Common Reed (Phragmites Australis) is an abundantly available natural material found throughout the world. Reed is typically used for thatch roofing in Europe, providing insulation and a weather-tight surface. Elsewhere, traditional techniques of weaving and bundling reeds have long been used to create entire buildings. The use of a digital production chain was explored as a means towards expanding the potential of reed as a sustainable, locally produced, construction material. Following an iterative process of designing from the micro to the macro scale and by experimenting with robotic assembly, the result is a reed-based system in the form of discrete components that can be configured to create a variety of structures.
keywords Phragmites Australis; Reed; Discrete Design; Robotic Assembly; Circular Design; Biodegradable Architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_160
id caadria2020_160
authors Bruce, Caitlin, Sweet, Kevin and Ok, Jeongbin
year 2020
title Closing the Loop - Recycling Waste Plastic
doi https://doi.org/10.52842/conf.caadria.2020.1.135
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 135-144
summary Worldwide we produce billions of tonnes of waste per year, including a million tonnes of plastic waste. Currently, there are methods for recycling plastic, but these methods can be expensive and time-consuming, resulting in most of the plastic being thrown into the landfill. Because plastic does not fully degrade, it ends up in the ocean and other waterways, poisoning the water with toxins. The purpose of this research is to provide a solution to reducing plastic waste by creating an alternative method of recycling that utilises new technologies such as additive manufacturing, to create a building material that fits into the concept of the circular economy. The findings of this research explored the recycling of plastic by collecting plastic waste such as PLA (Polylactic Acid) from old 3D printed models and other sources. The plastic was recycled into filament for additive manufacturing (AM) and used to print a building component, establishing a foundational proof of concept for the use of recycled plastic as a potential building material.
keywords Additive Manufacturing; 3D Printing; Recycling Plastic ; Recycled Filament ; Waste Plastic
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_098
id caadria2020_098
authors Davidova, Marie and McMeel, Dermott
year 2020
title Codesigning with Blockchain for Synergetic Landscapes - The CoCreation of Blockchain Circular Economy through Systemic Design
doi https://doi.org/10.52842/conf.caadria.2020.2.333
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 333-342
summary The paper is exploring methodology within the work in progress research by design through teaching project called 'Synergetic Landscapes'. It discusses codesign and cocreation processes that are crossing the academia, NGOs and applied practice within so called 'real life codesign laboratory' (Davidová, Pánek, & Pánková, 2018). This laboratory performs in real time and real life environment. The work investigates synergised bio-digital (living, non-living, physical, analogue, digital and virtual) prototypical interventions in urban environment that are linked to circular economy and life cycles systems running on blockchain. It represents a holistic systemic interactive and performing approach to design processes that involve living, habitational and edible, social and reproductive, circular and token economic systems. Those together are to cogenerate synergetic landscapes.
keywords codesign; blockchain; systemic design; prototyping; bio-digital design
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2023_99
id ecaade2023_99
authors Dervishaj, Arlind, Fonsati, Arianna, Hernández Vargas, José and Gudmundsson, Kjartan
year 2023
title Modelling Precast Concrete for a Circular Economy in the Built Environment
doi https://doi.org/10.52842/conf.ecaade.2023.2.177
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 177–186
summary In recent years, there has been a growing interest in adopting circular approaches in the built environment, specifically reusing existing buildings or their components in new projects. To achieve this, drawings, laser scanning, photogrammetry and other techniques are used to capture data on buildings and their materials. Although previous studies have explored scan-to-BIM workflows, automation of 2D drawings to 3D models, and machine learning for identifying building components and materials, a significant gap remains in refining this data into the right level of information required for digital twins, to share information and for digital collaboration in designing for reuse. To address this gap, this paper proposes digital guidelines for reusing precast concrete based on the level of information need (LOIN) standard EN 17412-1:2020 and examines several CAD and BIM modelling strategies. These guidelines can be used to prepare digital templates that become digital twins of existing elements, develop information requirements for use cases, and facilitate data integration and sharing for a circular built environment.
keywords building information modelling (BIM), circular construction, reuse, concrete
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia20_320
id acadia20_320
authors Fang, Zhihao; Wu, Yuning; Hassonjee, Ammar; Bidgoli, Ardavan; Cardoso-Llach PhD, Daniel
year 2020
title Towards a Distributed, Robotically Assisted Construction Framework
doi https://doi.org/10.52842/conf.acadia.2020.1.320
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 320-329.
summary In this paper we document progress towards an architectural framework for adaptive and distributed robotically assisted construction. Drawing from state-of-the-art reinforcement learning techniques, our framework allows for a variable number of robots to adaptively execute simple construction tasks. The paper describes the framework, demonstrates its potential through simulations of pick-and-place and spray-coating construction tasks conducted by a fleet of drones, and outlines a proof-of-concept experiment. With these elements the paper contributes to current research in architectural and construction robotics, particularly to efforts towards more adaptive and hybrid human-machine construction ecosystems. The code is available at: https://github.com/c0deLab/RAiC
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_456
id caadria2020_456
authors Halin, Gilles, Bolshakova, Veronika, Hochsheid, Elodie, Gless, Henri-Jean and Aida, Siala
year 2020
title Four Approaches for Integration of Digital BIM Practices in AEC Projects
doi https://doi.org/10.52842/conf.caadria.2020.1.883
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 883-892
summary The newest information and communication technologies bring a major shift to the AEC sector and foster it towards the new digital globalized economy. The last decades witnessed many changes in the AEC industry brought in by digital tools and by the adoption of Building Information Modeling/Management (BIM). The changes had influenced the common practices of design, construction and management, they have also fostered new digital practices into AEC. Innovative digital project management becomes a base element of an effective BIM project management. The project teams' collective competencies and skills contribute to design development and value engineering of the project. In this context, four approaches: BIM adoption, agile BIM, 4D digital decision-making, qualitative requirements to BIM, which are resulting from the research are presented in this article whose objective is to assist and facilitate the integration of digital in AEC specific professional practices.
keywords Digital Practice; BIM Process; Adoption; 4D; Agility
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2020_180
id caadria2020_180
authors Jensen, Mads Brath and Das, Avishek
year 2020
title Technologies and Techniques for Collaborative Robotics in Architecture - - establishing a framework for human-robotic design exploration
doi https://doi.org/10.52842/conf.caadria.2020.2.293
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 293-302
summary This study investigates the technological and methodological challenges in establishing an indeterministic approach to robotic fabrication that allows for a collaborative and creative design/fabrication process. The research objective enquires into how robotic processes in architecture can move from deterministic fabrication processes towards explorative and indeterministic design processes. To address this research objective, the study specifically explores how an architect and a robot can engage in a process of co-creation and co-evolution, that is enabled by a collaborative robotic arm equipped with an electric gripper and a web camera. Through a case-based experiment, of designing and constructing an adjustable façade system consisting of parallel wood lamellas, designer and robotic system co-create by means of interactive processes. The study will present and discuss the technological implementations used to construct the interactive robotic-based design process, with emphasis on the integration of visual analysis features in Grasshopper and on the benefits of establishing a state machine for interactive and creative robotic control in architecture.
keywords Design cognition; Digital fabrication ; Construction; Human-computer interaction
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2020_036
id ecaade2020_036
authors Kamari, Aliakbar and Kirkegaard, Poul Henning
year 2020
title Holistic Building Design - An integrated building design methodology based on systems thinking for reaching sustainability
doi https://doi.org/10.52842/conf.ecaade.2020.1.505
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 505-514
summary This paper introduces a new perspective on methodological requirements in building design related to questions of sustainability, where stakeholders ought to look at design in an integrated way when economy, society, and technical components are embedded in an ecological holistic perspective. To bind these different aspects together and face complexity, while the goal is to reach sustainability, Holistic Building Design (HBD) is drawn on existing concepts of systems thinking (ST), integrated design processes (IDP), and application of innovative technologies through building information modeling (BIM). The main aim of this approach is to involve deeper in all aspects of sustainable building design. The methodology is introduced and empirically practiced in a master's level course, and a general overview besides the first results of this on-going process are presented in this paper. It is observed that the HBD framework could significantly influence the understanding of the design process and enhancing it by iterative decision-making and turning the focus on the early design stage.
keywords Sustainability; Systems thinking; Integrated Design Process; Building Information Modeling; Holistic Building Design; Complexity
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2020_261
id caadria2020_261
authors Kimm, Geoff and Burry, Mark
year 2020
title Encouraging Community Participation in Design Decision-making through Reactive Scripting - a general framework tested in the smart villages context
doi https://doi.org/10.52842/conf.caadria.2020.2.051
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 51-60
summary In governmental decision-making, centralised experts spending a society's resources benefit from the guidance of community participation, yet the most effective participation by individuals distributed throughout a community often relies on expert guidance. This co-dependency of centralised and distributed knowledge is a critical weakness in contexts, such as developing rural communities, in which opportunities for in-field expert engagement are limited. This paper proposes a novel computational framework to break this deadlock by taking into the field responsive expertise digitally encapsulated within accessible built environment simulations. The framework is predicated in reactive scripting for design apps that invite a citizen user to progress a model towards their ideal design by prompts that highlight exceptional, contradictory, mutually exclusive, or simply underwhelming outcomes or branching decisions. The app simulations provide a gamified context of play in which goals are not prescriptively encoded but instead arise out of the social and community context. The detailed framework, presented together with a proof of concept smart villages app that is described along with an integration and feasibility test with positive results, provides a model for better participatory decision-making outcomes in the face of limited availability of expertise.
keywords community participation; built environment simulation; gamification; reactive scripting; smart cities and villages
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2020_511
id ecaade2020_511
authors Maierhofer, Mathias, Ulber, Marie, Mahall, Mona, Serbest, Asli and Menges, Achim
year 2020
title Designing (for) Change - Towards adaptivity-specific architectural design for situational open Environments
doi https://doi.org/10.52842/conf.ecaade.2020.2.575
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 575-584
summary The introduction of cybernetic principles to the architectural discourse some 50 years ago stimulated a new notion of buildings as dynamic and under-specified systems. Although their traditional conception as static and deterministic objects has remained predominant to this day, concepts for adaptive architecture capable of interacting with their surroundings and occupants have gained renewed attention in recent decades. However, investigations so far have largely concentrated on small-scale applications or individual adaptation strategies. The notion of situational open Environments, as argued in this paper, provides a framework through which adaptivity can be conceived and explored more holistically as well as on an inhabitable scale. Environments reject deterministic design and adaptation solutions and hence call for integrative and interactive design strategies that not only allow for the exploration of particularly adaptable (i.e. underspecified) architectural morphologies, but also for the communication and negotiation during their further development beyond deployment. In respect thereof, this paper discusses the potentials and implications of computational (design) strategies, meaning the agencies of buildings, designers, residents, and surroundings. The presented research originates from the author's involvement in an interdisciplinary research project centered around the development of an adaptive high-rise building that incorporates various adaptation strategies.
keywords Adaptive Architecture; Architectural Environment; Computational Design; Agent-based Modeling; Architecture Theory; Cybernetics
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia23_v3_111
id acadia23_v3_111
authors Markopoulou, Areti
year 2023
title Urban Mining: Material Resources for Circular Construction
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The material balance of the Earth is being challenged. The year 2020 was marked as the year when the total weight of human-made materials globally surpassed the weight of all life on Earth, while it is estimated that in the years to come the growth rate of mass added to the anthroposphere will increase exponentially (Elhacham et al., 2020). In this context of hypergrowth coupled with the climate emergency, the growing rate of urbanization and the increasing social and political awareness on the matters of the Anthropocene, the topics of resource depletion or insufficiency are being reframed. This keynote lecture at ACADIA 2023 highlights the importance of redefining resources and is introducing a new cultural, design and construction paradigm. Operating from an abundance mindset rather than from scarcity (Gausa et al., 2020) presents a new paradigm, particularly relevant in the design and production of the built environment. This approach expands the definition of resources, encompassing raw, non-raw, renewable, and recyclable materials. Shifting attention to the Anthroposphere as a source rather than just a destination for processed goods has the potential to disrupt linear design patterns and enhance circularity in cities and the built environment.
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id ecaade2020_411
id ecaade2020_411
authors Muehlbauer, Manuel, Song, Andy and Burry, Jane
year 2020
title Smart Structures - A Generative Design Framework for Aesthetic Guidance in Structural Node Design - Application of Typogenetic Design for Custom-Optimisation of Structural Nodes
doi https://doi.org/10.52842/conf.ecaade.2020.1.623
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-632
summary Virtual prototypes enable performance simulation for building components. The presented research extended the application of generative design using virtual prototypes for interactive optimisation of structural nodes. User-interactivity contributed to the geometric definition of design spaces rather than the final geometric outcome, enabling another stage of generative design for the micro-structure of the structural node. In this stage, the micro-structure inside the design space was generated using fixed topology. In contrast to common optimisation strategies, which converge towards a single optimal outcome, the presented design exploration process allowed the regular review of design solutions. User-based selection guided the evolutionary process of design space exploration applying Online Classification. Another guidance mechanism called Shape Comparison introduced an intelligent control system using an inital image input as design reference. In this way, aesthetic guidance enabled the combined evaluation of quantitative and qualitative criteria in the custom-optimisation of structural nodes. Interactive node design extended the potential for shape variation of custom-optimized structural nodes by addressing the geometric definition of design spaces for multi-scalar structural optimisation.
keywords generative design; evolutionary computation; interactive machine learning; typogenetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia23_v1_242
id acadia23_v1_242
authors Noel, Vernelle A.
year 2023
title Carnival + AI: Heritage, Immersive virtual spaces, and Machine Learning
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 242-245.
summary Built on a Situated Computations framework, this project explores preservation, reconfiguration, and presentation of heritage through immersive virtual experiences, and machine learning for new understandings and possibilities (Noel 2020; 2017; Leach and Campo 2022; Leach 2021). Using the Trinidad and Tobago Carnival - hereinafter referred to as Carnival - as a case study, Carnival + AI is a series of immersive experiences in design, culture, and artificial intelligence (AI). These virtual spaces create new digital modes of engaging with cultural heritage and reimagined designs of traditional sculptures in the Carnival (Noel 2021). The project includes three virtual events that draw on real events in the Carnival: (1) the Virtual Gallery, which builds on dancing sculptures in the Carnival and showcases AI-generated designs; (2) Virtual J’ouvert built on J’ouvert in Carnival with AI-generated J’ouvert characters specific; and (3) Virtual Mas which builds on the masquerade.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2020_128
id ecaade2020_128
authors Ramsgaard Thomsen, Mette, Tamke, Martin, Sparre-Petersen, Maria, Fabritius Buchwald, Emil and Hnídková, Simona
year 2020
title Silica - A circular material paradigm by 3D printing recycled glass
doi https://doi.org/10.52842/conf.ecaade.2020.2.613
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 613-622
summary Silica examines the making of 3D printed tiles from recycled container glass. This paper describes an interdisciplinary exploration into how robot-controlled extrusion can offer new material practices by which to fabricate glass elements of an architectural scale. We pursue working with recycled container glass powder - a waste product derived from the reprocessing of recycled container glass - to contribute to circular development within an interdisciplinary artistic development context in the meeting between architecture and glass design. The project has two aims. On the one hand, it builds an in-depth understanding of the parameters of fabrication and devising means by which to control these through digital design methods and their interfacing with robotic fabrication processes. On the other hand, it critically questions the architectural, aesthetic and performative properties of these material practices and their embedded methods.
keywords Robotic fabrication; Digital design systems; Circular economy; 3D Glass printing; New material practices
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2020_549
id sigradi2020_549
authors Rodríguez-Velásquez, Maribel
year 2020
title Socio-technical interactions in the relationship between social movements and internet: a review of the state of the art and the theoretical framework
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 549-554
summary The paper recognizes the relationship between social movements and internet how new practices of resistance through technological appropriation (Castells, 2012). This social interaction mediated by technology, understood as socio-technical interaction, establish new dynamics between human-technology-human and other heterogeneous actants (Latour, 2008), such as power and counter-power institutions that also connect to the socio-technical network. Therefore, the studies about digital interaction of the instrumental line are expanded, towards an understanding of socio-technical interactions, from the dynamics of design/use interconnected with cultural, political and economic contexts (Scolari, 2004, 2019), because the technology must satisfy social needs.
keywords Socio-technical interaction, Social movements, Internet, Human-Computer Interaction, Socio- technical network
series SIGraDi
email
last changed 2021/07/16 11:52

_id sigradi2021_350
id sigradi2021_350
authors Sperling, David, Martin Iglesias, Rodrigo, Voto, Cristina and Scheeren, Rodrigo
year 2021
title Digital Disobedience and Other Futures: Figurations of Futuristic Home Devices
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 571–582
summary The article presents and discusses the experience of a workshop held online in 2020 as part of the DigitalFUTURES event. The proposal found its starting point in the register of a world in the midst of a pandemic crisis. The general objective of the workshop was the construction of a design thinking capable of acting on the domestic by means of a disobedience projected towards a possible future. In this framework, digital disobedience became an exercise in critically questioning certain ambiguities of digital interfaces in their everyday omnipresence. By adopting a decolonial sight on design through an epistemology from the South, it was possible to achieve at alternative figurations of futures. These figurations led to the design of a series of futuristic domestic devices capable of exploring disobedient scenarios of domestic dwelling.
keywords diseno ficcional, hibridación tecnológica, gambiarra, diseno paramétrico, futurización
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2020_052
id caadria2020_052
authors Wang, Joann
year 2020
title Digital Architextiles - Nonwoven textile thermoforming in robotic fabrication
doi https://doi.org/10.52842/conf.caadria.2020.1.045
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 45-54
summary This paper includes an experimental study of parametric design, which is combined with digital fabrication and weaving techniques for Digital Architextiles. Digital Architextiles is a way of combining circular material of PET (Polyethylene Terephthalate) winding and thermoforming fabrication with robot collaboration for circular economy. In addition, combined with the concept of circular economy, mass customization with tailor-made material can effectively reduce unnecessary waste. Collaborating with parameterized tools, the research work has developed lightweight structures in different winding patterns. Therefore, starting from the exploration of the material system, the paper studies the circular PET material fiber in the digital process assisted by the robot arms, and proposes a circular-based system with high adaptability and freedom, which can be used for the production tool in the multi-stage manufacturing, and to produce a building winding unit responding to various needs in circular economy to various surface shapes.
keywords PET material of Circular Economy; Parametric Design; Winding Fabrication; Thermoforming Fabrication; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_170404 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002