CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 670

_id sigradi2021_354
id sigradi2021_354
authors Ferreira, Julio César and Ferreira, Claudio Lima
year 2021
title Emotion, Cognition, and The Practice of Teaching Architectural Design
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 435–450
summary From the view of concepts related to emotions and feelings treated in the field of cognitive - behavioral neuroscience and its relation with the teaching-learning processes, this paper searches to analyze educational strategies that can contribute to the field of emergency synchronous remote teaching architectural design. Methodologically, the bibliographical research of exploratory nature is related to an experience of investigation about pedagogical methods of teaching architectural design in a postgraduate course, developed, in the second semester of 2020, during the period of emergency synchronous remote teaching due to the SARS-Cov-2 coronavirus.We seek to comprehend the benefits and limits of remote emergency teaching practices of architectural design, looking at factors such as emotions and feelings as important mediation tools on teaching-learning processes.
keywords Neurociencias, Fatores emocionais, Cogniçao em projeto, Ensino-aprendizado de projeto de arquitetura, Pensamento complexo.
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2020_991
id sigradi2020_991
authors Gomez, Paula; Hadi, Khatereh; Kemenova, Olga; Swarts, Matthew
year 2020
title Spatiotemporal Modeling of COVID-19 Spread in Built Environments
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 991-996
summary This research proposes a Spatiotemporal Modeling approach to understand the role of architecture, specifically the built environment, in the COVID-19 pandemic. The model integrates spatial and temporal parameters to calculate the probability of spread of and exposure to SARS-CoV-2 virus (responsible of COVID-19 disease) due to the combination of four aspects: Spatial configuration, organizational schedules, people’s behavior, and virus characteristics. Spatiotemporal Modeling builds upon the current models of building analytics for architecture combined with predictive models of COVID-19 spread. While most of the current research on COVID-19 spread focuses on mathematical models at regional scales and the CDC guidelines emphasizing on human behavior, our research focuses on the role of buildings in this pandemic, as the intermediate mechanism where human and social activities occur. The goal is to understand the most significant parameters that influence the virus spread within built environments, including human-to-human, fomite (surface-to-human), and airborne ways of transmission, with the purpose of providing a comprehensive parametric model that may help identify the most influential design and organizational decisions for controlling the pandemic. The proof-of-concept study is a healthcare facility.
keywords Spatiotemporal modeling, Agent-based simulation, COVID-19, Virus spread, Built environments, Human behavior, Social distancing
series SIGraDi
email
last changed 2021/07/16 11:53

_id ecaade2020_220
id ecaade2020_220
authors Ibrahim, Aly, Abdelmohsen, Sherif, Omar, Walid and Zayan, Akram
year 2020
title Extending the Passive Actuation of Low-tech Architectural Adaptive Systems by Integrating Hygroscopic and Thermal Properties of Wood
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 641-650
doi https://doi.org/10.52842/conf.ecaade.2020.2.641
summary Recent studies involving the passive actuation of zero-energy architectural adaptive systems using programmable materials have addressed the prototyping of wood motion responses by utilizing its latent hygroscopic properties. Most of these systems have focused on mechanisms that are triggered by varying levels of humidity, with very limited efforts addressing the effect of temperature variations; a challenge in hot climatic zones. This paper extends the passive actuation of adaptive systems in climates where humidity and/or temperature variations are dominant. A series of physical experiments were conducted to observe wood veneer sample deflection and motion response behavior under three varying temperature and humidity conditions, with constant values of fiber orientation, lamination, thickness, type of wood, and sample proportion and geometry. The experiment results showed that the coefficient of thermal expansion is an effective parameter, where higher deflection and response speed was recorded under high relative humidity (>80%) upon increase in temperature (>35°).
keywords Programmable materials; Adaptive facades; Hygromorphic behavior; Responsive systems; Shape-shifting
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2020_267
id ecaade2020_267
authors Argin, Gorsev, Pak, Burak and Turkoglu, Handan
year 2020
title Through the Eyes of (Post-)Flâneurs - Altering rhythm and visual attention in public space in the era of smartphones
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 239-248
doi https://doi.org/10.52842/conf.ecaade.2020.1.239
summary In the last decade, rapid penetration of smartphones into our everyday life introduced a new kind of urban wanderer named as the 'post-flâneur'. By navigating through the virtual and physical space with a smartphone, and taking and sharing photographs, post-flâneur walks and experiences the city in novel ways. This paper aims to investigate the effects of smartphone use on the human-environment relationship by comparing post-flânerie with flânerie in public space with a focus on two key indicators: alteration of 1) the visual attention and 2) the walking rhythm. In this regard, ten postgraduate Architecture students are asked to perform flânerie and post-flânerie consecutively in the historical city center of Ghent with an eye-tracker and a smartphone. During the flânerie condition, they walked and experienced the city without using a smartphone. In the post-flânerie condition, they used a smartphone, took pictures and uploaded them to an application. By analyzing the eye-tracker (number and duration of fixations) and the smartphone (location data and geolocated photographs) data, altering rhythm and visual attention during the flânerie and post-flânerie were compared. Preliminary results indicate that flânerie and post-flânerie differ in terms of rhythm and visual attention. The average duration of fixations on the environment were significantly lower in the post-flânerie condition while the average walking rhythm was faster but impeded from time to time. In addition, post-flâneurs' visual attention was on the smartphone during a significant part of the stationary activities which point out to an altered state of public space appropriation. The findings are significant because they reveal the novel spatial appropriations and experiences of the (post)public space -particularly "the honeypot effect" which was more significant in the post-flânerie condition. These observations evoke questions on how designers can rethink public space as a hybrid construct integrating the virtual and the physical.
keywords post-flâneur; rhythm; visual attention; smartphone; eye-tracking
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_120
id acadia20_120
authors Barsan-Pipu, Claudiu; Sleiman, Nathalie; Moldovan, Theodor
year 2020
title Affective Computing for Generating Virtual Procedural Environments Using Game Technologies
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 120-129.
doi https://doi.org/10.52842/conf.acadia.2020.2.120
summary Architects have long sought to create spaces that can relate to or even induce specific emotional conditions in their users, such as states of relaxation or engagement. Dynamic or calming qualities were given to these spaces by controlling form, perspective, lighting, color, and materiality. The actual impact of these complex design decisions has been challenging to assess, from both quantitative and qualitative standpoints, because neural empathic responses, defined in this paper by feature indexes (FIs) and mind indexes (MIs), are highly subjective experiences. Recent advances in the fields of virtual procedural environments (VPEs) and virtual reality (VR), supported by powerful game engine (GE) technologies, provide computational designers with a new set of design instruments that, when combined with brain-computing interfacing (BCI) and eye-tracking (E-T) hardware, can be used to assess complex empathic reactions. As the COVID-19 health crisis showed, virtual social interaction becomes increasingly relevant, and the social catalytic potential of VPEs can open new design possibilities. The research presented in this paper introduces the cyber-physical design of such an affective computing system. It focuses on how relevant empathic data can be acquired in real time by exposing subjects within a dynamic VR-based VPE and assessing their emotional responses while controlling the actual generative parameters via a live feedback loop. A combination of VR, BCI, and E-T solutions integrated within a GE is proposed and discussed. By using a VPE inside a BCI system that can be accurately correlated with E-T, this paper proposes to identify potential morphological and lighting factors that either alone or combined can have an empathic effect expressed by the relevant responses of the MIs.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_226p
id acadia20_226p
authors Borhani, Alireza; Kalantar, Negar
year 2020
title Interlocking Shell
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 226-231
summary With a specific focus on robotic stereotomy, two full-scale vault structures were designed to explore the potential of self-standing building structures made from interlocking components; these structures were fabricated with a track-mounted industrial-scale robot (ABB 4600). To respond to the economic affordances of robotic subtractive cutting, all uniquely shaped structural modules came from one block of material (48"" x96"" x36""). Through the discretization of curvilinear tessellated vault surfaces into a limited number of uniquely shaped modules with embedded form-fitting connectors, the project exhibited the potential for programming a robot to cut ruled surfaces to produce freeform shells of any kind. Representing nearly zero-waste construction, the developed technology can potentially be used for self-supporting emergency shelters and field medical clinics, facilitating easy shipping and speedy assembly. Without using any scaffolding, a few people can erect and dismantle an entire mortar-free structure at the construction site. The disassembled structure occupies minimal space in storage, and the structure’s pieces can be transported to the site in stacks. Robot milling is a common technique for removing material to transform a block into a sculptural shape. Unlike milling techniques that produce significant waste, we used a hotwire that sliced through a Geofoam block to create almost no waste pieces. Since the front side of every module was concurrent with the backside of the next one, such a decision allowed to operate just one cut per front side of each module. In this case, by having three cuts, two neighboring modules were fabricated. The form of the structure and its modules emerged from the constraints of the fabrication technique, aiming to establish a feedback loop between geometry, material, simulation, and tool. By cross-referencing geometric data across Grasshopper, a customized tessellation script was made to breakdown a vault into its modular ruled surface constructs.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ijac202018302
id ijac202018302
authors Brath Jensen, Mads; Isak Worre Foged and Hans Jørgen Andersen
year 2020
title A framework for interactive human–robot design exploration
source International Journal of Architectural Computing vol. 18 - no. 3, 235-253
summary This study seeks to identify key aspects for increased integration of interactive robotics within the creative design process. Through its character as foundational research, the study aims to contribute to the advancement of new explorative design methods to support architects in their exploration of fabrication and assembly of an integrated performance-driven architecture. The article describes and investigates a proposed design framework for supporting an interactive human–robot design process. The proposed framework is examined through a 3-week architectural studio, with university master students exploring the design of a brick construction with the support of an interactive robotic platform. Evaluation of the proposed framework was done by triangulation of the authors’ qualitative user observations, quantitative logging of the students’ individual design processes, and through questionnaires completed after finishing the studies. The result suggests that interactive human–robot fabrication is a relevant mode of design with positive effect on the process of creative design exploration.
keywords Design methods, robotic design processes, interactive robotics, computational design, design exploration, creativity
series other
type normal paper
email
last changed 2020/11/02 13:39

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_432
id ecaade2020_432
authors Fragkia, Vasiliki and Worre Foged, Isak
year 2020
title Methods for the Prediction and Specification of Functionally Graded Multi-Grain Responsive Timber Composites
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 585-594
doi https://doi.org/10.52842/conf.ecaade.2020.2.585
summary The paper presents design-integrated methods for high-resolution specification and prediction of functionally graded wood-based thermal responsive composites, using machine learning. The objective is the development of new circular design workflow, employing robotic fabrication, in order to predict fabrication files linked to material performance and design requirements, focused on application for intrinsic responsive and adaptive architectural surfaces. Through an experimental case study, the paper explores how machine learning can form a predictive design framework where low-resolution data can solve material systems at high resolution. The experimental computational and prototyping studies show that the presented image-based machine learning method can be adopted and adapted across various stages and scales of architectural design and fabrication. This in turn allows for a design-per-requirement approach that optimizes material distribution and promotes material economy.
keywords material specification; responsive timber composites; machine learning; robotic fabrication; building envelopes
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2020_156
id ecaade2020_156
authors Hemmerling, Marco and Maris, Simon
year 2020
title INTERCOM - A platform for collaborative design processes
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 173-180
doi https://doi.org/10.52842/conf.ecaade.2020.2.173
summary The INTERCOM project propounds a cloud-based collaboration platform for digital planning processes in architecture. The concept is based on an openBIM approach and ensures open access for all partners involved. At its core it provides IFC-based and model-related online tools for planning, communication and collaboration. The interaction with the model and the exchange with other project partners takes place in real-time via a model-related chat and BCF exports. In addition, the integration of e-learning modules (e.g. video tutorials, wikis, project documents) encourages problem solving through further education. Especially the integration of communication and collaboration tools is supposed to enhance the decision making throughout the design process and become a key factor for a successful and coordinated BIM process. Primarily INTERCOM has been developed as a prototype for teaching BIM in interdisciplinary teams. Subsequently, the application can also be adopted for professional practice. The paper evaluates previous experiences from BIM cloud teaching and discusses the conception and development of the proposed collaborative platform.
keywords architecture curriculum; didactics; building information modeling (BIM); collaborative design process; common data environment (CDE)
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2020_184
id ecaade2020_184
authors Kycia, Agata and Guiducci, Lorenzo
year 2020
title Self-shaping Textiles - A material platform for digitally designed, material-informed surface elements
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 21-30
doi https://doi.org/10.52842/conf.ecaade.2020.2.021
summary Despite the cutting edge developments in science and technology, architecture to a large extent still tends to favor form over matter by forcing materials into predefined, often superficial geometries, with functional aspects relegated to materials or energy demanding mechanized systems. Biomaterials research has instead shown a variety of physical architectures in which form and matter are intimately related (Fratzl, Weinkamer, 2007). We take inspiration from the morphogenetic processes taking place in plants' leaves (Sharon et al., 2007), where intricate three-dimensional surfaces originate from in-plane growth distributions, and propose the use of 3D printing on pre-stretched textiles (Tibbits, 2017) as an alternative, material-based, form-finding technique. We 3D print open fiber bundles, analyze the resulting wrinkling phenomenon and use it as a design strategy for creating three-dimensional textile surfaces. As additive manufacturing becomes more and more affordable, materials more intelligent and robust, the proposed form-finding technique has a lot of potential for designing efficient textile structures with optimized structural performance and minimal usage of material.
keywords self-shaping textiles; material form-finding; wrinkling; surface instabilities; bio-inspired design; leaf morphogenesis
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2020_367
id caadria2020_367
authors Ma, Zhichao, Xiao, Yiqiang and Chen, Xiong
year 2020
title Research on Commercial Space Vitality of Airport Terminal Based on 3D Vision Field Simulation of Pedestrian Flows - Taking Guangzhou Baiyun International Airport Terminal 2 as a Study Case
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 589-598
doi https://doi.org/10.52842/conf.caadria.2020.1.589
summary In recent years, more and more large-scale terminal buildings have emerged. In the design and construction of the terminal, how to increase the non-aeronautical revenue of the terminal has become one of the difficulties and priorities. The commercial vitality is one of the important factors influencing non-aeronautical revenue of the terminal. There is a correlation between passenger flows and commercial space vitality. So it is necessary to analyze the impact of pedestrian flows on commercial space vitality. The commercial space vitality can be evaluated by the vision dwell time on the shop surfaces. This paper focused on the relationship between passenger flows and commercial space vitality at the terminal. We modeled and simulated the domestic mixed-flow hall of Baiyun airport terminal 2 in Massmotion. After the pedestrian 3D vision field simulation, Vision Time Maps were exported to assess the commercial space vitality. After comparing the survey results with simulation results, we can conclude that the mixing of multiple pedestrian flows can improve the commercial space vitality of the airport terminal.
keywords 3D vision field simulation; Airport terminal commercial space vitality; Guangzhou Baiyun International Airport Terminal 2 ; Pedestrian Flow
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac202018206
id ijac202018206
authors Mitterberger, Daniela and Tiziano Derme
year 2020
title Digital soil: Robotically 3D-printed granular bio-composites
source International Journal of Architectural Computing vol. 18 - no. 2, 194-211
summary Organic granular materials offer a valid alternative for non-biodegradable composites widely adopted in building construction and digital fabrication. Despite the need to find alternatives to fuel-based solutions, current material research in architecture mostly supports strategies that favour predictable, durable and homogeneous solutions. Materials such as soil, due to their physical properties and volatile nature, present new challenges and potentials to change the way we manufacture, built and integrate material systems and environmental factors into the design process. This article proposes a novel fabrication framework that combines high-resolution three-dimensional- printed biodegradable materials with a novel robotic-additive manufacturing process for soil structures. Furthermore, the research reflects on concepts such as affordance and tolerance within the field of digital fabrication, especially in regards to bio-materials and robotic fabrication. Soil as a building material has a long tradition. New developments in earth construction show how earthen buildings can create novel, adaptive and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough geometrical articulations. This research proposes to use a robotic binder-jetting process that creates novel organic bio-composites to overcome such limitations of common earth constructions. In addition, this article shows how biological polymers, such as polysaccharides-based hydrogels, can be used as sustainable, biodegradable binding agents for soil aggregates. This article is divided into four main sections: architecture and affordance; tolerance versus precision; water-based binders; and robotic fabrication parameters. Digital Soil envisions a shift in the design practice and digital fabrication that builds on methods for tolerance handling. In this context, material and geometrical properties such as material porosity, hydraulic conductivity and natural evaporation rate affect the architectural resolution, introducing a design process driven by matter. Digital Soil shows the potential of a fully reversible biodegradable manufacturing process for load-bearing architectural elements, opening up new fields of application for sustainable material systems that can enhance the ecological potential of architectural construction.
keywords Robotic fabrication, adaptive materials, water-based fabrication, affordance, organic matter, additive manufacturing
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_244
id ecaade2020_244
authors Simeone, Davide, Cursi, Stefano, Coraglia, Ugo Maria and Fioravanti, Antonio
year 2020
title Reasoning in Common Data Environments - Re-thinking CDEs to enhance collaboration in BIM processes
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 499-506
doi https://doi.org/10.52842/conf.ecaade.2020.2.499
summary In BIM processes, the concept of Common Data Environment - CDE - has often been depicted as a key element for successful collaboration and information sharing among different actors but, in current practice, acts as a mere documentation repository ineffective for true collaborative purposes. Therefore, the idea of CDE seems to be overrated on the one hand and unexploited on the other, while effective collaboration is still far from being decisively supported. To overcome this lack, the present research focuses on the definition of a new generation of CDEs, enhanced with an information level for knowledge integration provided by different information carriers such as models and datasets. The paper discusses its development through a graph database platform and dedicated methodologies for data retrieval and query, to verify coherence and consistency of information among different models.
keywords Collaboration in AEC processes; Common Data Environment; Graph Databases; Building Information Modeling; Queries and data retrieval
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2020_371
id caadria2020_371
authors Son, Kihoon, Chun, Hwiwon and Hyun, Kyung Hoon
year 2020
title Ambiguous vs. Concrete: Identifying the Effect of Design References with Various Level of Details on Designer's Creativity in the Early Design Phase
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 587-596
doi https://doi.org/10.52842/conf.caadria.2020.2.587
summary During the early design phase, spatial designers search for design references to develop design ideas. In this process, the level of detail (LoD) of design references can significantly influence the quality of design outcomes. However, previous studies have only suggested guidelines indicating that abstract references are useful in the early design phase without the degree of LoD. In response, this study aims to identify the impact of LoD of design references on design outcomes during the design concept development. To this end, we proposed three different reference types (abstract, hybrid, and concrete), and conducted experiments to assess the creativity and efficiency of the design outcome per LoD type. We also developed the FPRT (Floor Plan Retrieving Tool) system along with 7,842 existing residential floor plans for the experiments. The results of the study showed that there is a significant difference in design outcomes depending on the LoD types.
keywords Design Reference; Design Retrieval; Spatial Design; Level of Details; Early Design Phase
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2020_167
id caadria2020_167
authors Stouffs, Rudi and Li, Andrew
year 2020
title Learning from Users and their Interaction with a Dual-interface Shape-grammar Implementation
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 153-162
doi https://doi.org/10.52842/conf.caadria.2020.2.153
summary We present a shape grammar implementation with two new characteristics. One is that it is visual and directly manipulable: users draw the shapes and rules in a modeling application. The other characteristic is advanced technical capabilities, such as non-visual attributes and higher-order elements like surfaces. It consists of three components running in Rhinoceros3d. We also report on workshops that introduced the implementation.
keywords shape grammars; interaction; implementation
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2020_183
id ecaade2020_183
authors Zhao, Jiangyang, Lombardi, Davide and Agkathidis, Asterios
year 2020
title Application of Robotic Technologies for the Fabrication Of Traditional Chinese Timber Joints
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 351-360
doi https://doi.org/10.52842/conf.ecaade.2020.2.351
summary The traditional Chinese building design was influenced by the climate and the sociogeographical conditions of the different regions in China. They were usually constructed out of wood relying on timber-joint based construction systems. Amongst the wide variety of the structural elements, the Dougong (bucket arch) is one of the most common components of traditional wooden framework buildings, presenting a high level of complexity. Parametric design and robotic technology enable new possibilities regarding its fabrication and application in contemporary architecture. Our paper will explore how the Dougong components could be reinvented through the use of parametric tools and robotic fabrication methods and thus applied to contemporary architectural structures. We will analyse and compare the properties of the original Dougong with the reinvented unit by using finite element analysis and digital optimization tools. Our findings will provide an insight into the traditional construction principles of the joint and how these can inform a design and fabrication framework for its application in contemporary buildings.
keywords Dougong joint; timber structures; parametric design; robotic fabrication; optimization algorithm
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2020_115
id caadria2020_115
authors Zhong, Jia Ding, Chao, Sara, Ming Chun and Tsou, Jin Yeu
year 2020
title Establishing a Prediction Model for Better Decision Making Regarding Urban Green Planning in a High-density Urban Context
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 517-526
doi https://doi.org/10.52842/conf.caadria.2020.1.517
summary This paper presents a prototype of a prediction model. The model helps to improve decision making regarding urban green patch planning. This process is achieved by the model predicting the response of thermal comfort conditions in an urban green patch to different planning decisions. This process is demonstrated via an investigation of variations in urban density. The model features a surface temperature mapping approach, which assigns surface temperature data acquired through field-measurement to solid surfaces in CFD simulations based on the shading state. Besides, trees are simulated in a systematic way, and the model combines CFD simulations with PET values, the processes of which are also demonstrated in this paper.
keywords Urban Green Planning; Decision Making; Thermal Comfort; CFD
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2020_064
id ecaade2020_064
authors Agirbas, Asli
year 2020
title Building Energy Performance of Complex Forms - Test simulation of minimal surface-based form optimization
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 259-268
doi https://doi.org/10.52842/conf.ecaade.2020.1.259
summary Many optimization tools are developed in line with the form-energy relationship to ensure energy efficiency in buildings. However, such studies with complex forms are very limited. Therefore, the MSO-2 model was developed. In this model, on the roof of the conceptual form, minimal surface is used, thus complex forms can be created. In this model, the conceptual form can be optimized (for one day) according to these objectives: increasing daylight in the space with maximum value limitation, reducing radiation on the roof, and enlarging floor surface area of the conceptual form with minimum value limitation. A test simulation was performed with this model. Thus, in order to find the most optimized form in multi-objective optimization, more generations could be produced in a short time and optimized conceptual forms, which were produced, could be tested for energy efficiency.
keywords Multi-Objective Optimization; Radiation Analysis; Building energy performance; Daylighting Analysis
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_847609 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002