CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id caadria2020_091
id caadria2020_091
authors Ren, Yue and Zheng, Hao
year 2020
title The Spire of AI - Voxel-based 3D Neural Style Transfer
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 619-628
doi https://doi.org/10.52842/conf.caadria.2020.2.619
summary In the architecture field, humans have mastered various skills for creating unique spatial experiences with unknown interplays between known contents and styles. Meanwhile, machine learning, as a popular tool for mapping different input factors and generating unpredictable outputs, links the similarity of the machine intelligence with the typical form-finding process. Style Transfer, therefore, is widely used in 2D visuals for mixing styles while inspiring the architecture field with new form-finding possibilities. Researchers have applied the algorithm in generating 2D renderings of buildings, limiting the results in 2D pixels rather than real full volume forms. Therefore, this paper aims to develop a voxel-based form generation methodology to extend the 3D architectural application of Style Transfer. Briefly, through cutting the original 3D model into multiple plans and apply them to the 2D style image, the stylized 2D results generated by Style Transfer are then abstracted and filtered as groups of pixel points in space. By adjusting the feature parameters with user customization and replacing pixel points with basic voxelization units, designers can easily recreate the original 3D geometries into different design styles, which proposes an intelligent way of finding new and inspiring 3D forms.
keywords Form Finding; Machine Learning; Artificial Intelligence; Style Transfer
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2019_17
id cdrf2019_17
authors Chuan Liu, Jiaqi Shen, Yue Ren, and Hao Zheng
year 2020
title Pipes of AI – Machine Learning Assisted 3D Modeling Design
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_2
summary Style transfer is a design technique that is based on Artificial Intelligence and Machine Learning, which is an innovative way to generate new images with the intervention of style images. The output image will carry the characteristic of style image and maintain the content of the input image. However, the design technique is employed in generating 2D images, which has a limited range in practical use. Thus, the goal of the project is to utilize style transfer as a toolset for architectural design and find out the possibility for a 3D modeling design. To implement style transfer into the research, floor plans of different heights are selected from a given design boundary and set as the content images, while a framework of a truss structure is set as the style image. Transferred images are obtained after processing the style transfer neural network, then the geometric images are translated into floor plans for new structure design. After the selection of the tilt angle and the degree of density, vertical components that connecting two adjacent layers are generated to be the pillars of the structure. At this stage, 2D style transferred images are successfully transformed into 3D geometries, which can be applied to the architectural design processes. Generally speaking, style transfer is an intelligent design tool that provides architects with a variety of choices of idea-generating. It has the potential to inspire architects at an early stage of design with not only 2D but also 3D format.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_234
id caadria2020_234
authors Zhang, Hang and Blasetti, Ezio
year 2020
title 3D Architectural Form Style Transfer through Machine Learning
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 659-668
doi https://doi.org/10.52842/conf.caadria.2020.2.659
summary In recent years, a tremendous amount of progress is being made in the field of machine learning, but it is still very hard to directly apply 3D Machine Learning on the architectural design due to the practical constraints on model resolution and training time. Based on the past several years' development of GAN (Generative Adversarial Network), also the method of spatial sequence rules, the authors mainly introduces 3D architectural form style transfer on 2 levels of scale (overall and detailed) through multiple methods of machine learning algorithms which are trained with 2 types of 2D training data set (serial stack and multi-view) at a relatively decent resolution. By exploring how styles interact and influence the original content in neural networks on the 2D level, it is possible for designers to manually control the expected output of 2D images, result in creating the new style 3D architectural model with a clear designing approach.
keywords 3D; Form Finding; Style Transfer; Machine Learning; Architectural Design
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2020_60
id sigradi2020_60
authors Asmar, Karen El; Sareen, Harpreet
year 2020
title Machinic Interpolations: A GAN Pipeline for Integrating Lateral Thinking in Computational Tools of Architecture
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 60-66
summary In this paper, we discuss a new tool pipeline that aims to re-integrate lateral thinking strategies in computational tools of architecture. We present a 4-step AI-driven pipeline, based on Generative Adversarial Networks (GANs), that draws from the ability to access the latent space of a machine and use this space as a digital design environment. We demonstrate examples of navigating in this space using vector arithmetic and interpolations as a method to generate a series of images that are then translated to 3D voxel structures. Through a gallery of forms, we show how this series of techniques could result in unexpected spaces and outputs beyond what could be produced by human capability alone.
keywords Latent space, GANs, Lateral thinking, Computational tools, Artificial intelligence
series SIGraDi
email
last changed 2021/07/16 11:48

_id caadria2020_446
id caadria2020_446
authors Cho, Dahngyu, Kim, Jinsung, Shin, Eunseo, Choi, Jungsik and Lee, Jin-Kook
year 2020
title Recognizing Architectural Objects in Floor-plan Drawings Using Deep-learning Style-transfer Algorithms
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 717-725
doi https://doi.org/10.52842/conf.caadria.2020.2.717
summary This paper describes an approach of recognizing floor plans by assorting essential objects of the plan using deep-learning based style transfer algorithms. Previously, the recognition of floor plans in the design and remodeling phase was labor-intensive, requiring expert-dependent and manual interpretation. For a computer to take in the imaged architectural plan information, the symbols in the plan must be understood. However, the computer has difficulty in extracting information directly from the preexisting plans due to the different conditions of the plans. The goal is to change the preexisting plans to an integrated format to improve the readability by transferring their style into a comprehensible way using Conditional Generative Adversarial Networks (cGAN). About 100-floor plans were used for the dataset which was previously constructed by the Ministry of Land, Infrastructure, and Transport of Korea. The proposed approach has such two steps: (1) to define the important objects contained in the floor plan which needs to be extracted and (2) to use the defined objects as training input data for the cGAN style transfer model. In this paper, wall, door, and window objects were selected as the target for extraction. The preexisting floor plans would be segmented into each part, altered into a consistent format which would then contribute to automatically extracting information for further utilization.
keywords Architectural objects; floor plan recognition; deep-learning; style-transfer
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
doi https://doi.org/10.52842/conf.acadia.2020.1.688
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id artificial_intellicence2019_207
id artificial_intellicence2019_207
authors Hao Zheng
year 2020
title Form Finding and Evaluating Through Machine Learning: The Prediction of Personal Design Preference in Polyhedral Structures
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2025)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_13
summary 3D Graphic Statics (3DGS) is a geometry-based structural design and analysis method, helping designers to generate 3D polyhedral forms by manipulating force diagrams with given boundary conditions. By subdividing 3D force diagrams with different rules, a variety of forms can be generated, resulting in more members with shorter lengths and richer overall complexity in forms. However, it is hard to evaluate the preference toward different forms from the aspect of aesthetics, especially for a specific architect with his own scene of beauty and taste of forms. Therefore, this article proposes a method to quantify the design preference of forms using machine learning and find the form with the highest score based on the result of the preference test from the architect. A dataset of forms was firstly generated, then the architect was asked to keep picking a favorite form from a set of forms several times in order to record the preference. After being trained with the test result, the neural network can evaluate a new inputted form with a score from 0 to 1, indicating the predicted preference of the architect, showing the possibility of using machine learning to quantitatively evaluate personal design taste.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id acadia20_446
id acadia20_446
authors Norell, Daniel; Rodhe, Einar; Hedlund, Karin
year 2020
title Completions
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 446-455.
doi https://doi.org/10.52842/conf.acadia.2020.1.446
summary Reuse of construction and demolition waste tends to be exceptional rather than systemic, despite the fact that such waste exists in excess. One of the challenges in handling used elements and materials is integrating them into a digital workflow through means of survey and representation. Techniques such as 3D scanning and robotic fabrication have been used to target irregular geometries of such extant material. Scanning can be applied to digitally define a unique rather than standard stock of materials or, as in the field of preservation, to transfer specific forms and qualities onto a new stock. This paper melds these two approaches through Completions, a project that promotes reuse by integrating salvaged elements and materials into new assemblies. Drawing from the ancient practice of reuse known as spolia, the work develops from the identification and documentation of a varied set of used entities that become points of departure for subsequent design and production of new entities. This involves multiple steps, from locating and selecting used elements to scanning and fabrication. Three assemblies based on salvaged objects are produced: a window frame, a door panel, and a mantelpiece. Different means of documentation are outlined in relation to specific qualities of these objects, from photogrammetry to image and mesh-based tracing. Authentic qualities belonging to these elements, such as wear and patina, are coupled with more ambiguous forms and materialities only attainable through digital survey and fabrication. Finally, Completions speculates on how more automated workflows might make it feasible to develop extensive virtual catalogs of used objects that designers could interact with remotely.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_015
id ecaade2020_015
authors Yazici, Sevil
year 2020
title A machine-learning model driven by geometry, material and structural performance data in architectural design process
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 411-418
doi https://doi.org/10.52842/conf.ecaade.2020.1.411
summary Artificial Intelligence (AI), based on interpretation of data, influences various professions including architectural design today. Although research on integrating conceptual design with Machine Learning (ML) algorithms as a subset of the AI has been investigated previously, there is not a framework towards integration of architectural geometry with material properties and structural performance data towards decision making in the early-design phase. Undertaking performance simulations require significant amount of computation power and time. The aim of this research is to integrate ML algorithms into design process to achieve time efficiency and improve design results. The proposed workflow consists of three stages, including generation of the parametric model; running structural performance simulations to collect the data, and operating the ML algorithms, including Artificial Neural Network (ANN), Non-Linear Regression (NLR) and Gaussian Mixture (GM) for undertaking different tasks. The results underlined that the system generates relatively fast solutions with accuracy. Additionally, ML algorithms can assist generative design processes.
keywords Machine-learning; performance simulation; data-driven design; early-design phase
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia20_238
id acadia20_238
authors Zhang, Hang
year 2020
title Text-to-Form
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 238-247.
doi https://doi.org/10.52842/conf.acadia.2020.1.238
summary Traditionally, architects express their thoughts on the design of 3D architectural forms via perspective renderings and standardized 2D drawings. However, as architectural design is always multidimensional and intricate, it is difficult to make others understand the design intention, concrete form, and even spatial layout through simple language descriptions. Benefiting from the fast development of machine learning, especially natural language processing and convolutional neural networks, this paper proposes a Linguistics-based Architectural Form Generative Model (LAFGM) that could be trained to make 3D architectural form predictions based simply on language input. Several related works exist that focus on learning text-to-image generation, while others have taken a further step by generating simple shapes from the descriptions. However, the text parsing and output of these works still remain either at the 2D stage or confined to a single geometry. On the basis of these works, this paper used both Stanford Scene Graph Parser (Sebastian et al. 2015) and graph convolutional networks (Kipf and Welling 2016) to compile the analytic semantic structure for the input texts, then generated the 3D architectural form expressed by the language descriptions, which is also aided by several optimization algorithms. To a certain extent, the training results approached the 3D form intended in the textual description, not only indicating the tremendous potential of LAFGM from linguistic input to 3D architectural form, but also innovating design expression and communication regarding 3D spatial information.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
doi https://doi.org/10.52842/conf.acadia.2020.1.516
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_108p
id acadia20_108p
authors Akbarzadeh, Masoud; Ghomi, Ali Tabatabaie; Bolhassani, Mohammad; Akbari, Mostafa; Seyedahmadian, Alireza; Papalexiou, Konstantinos
year 2020
title Saltatur
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 108-113.
summary The Saltatur (Dancer in Latin) demonstrates innovative research in the design and fabrication of a prefab structure consisting of spatial concrete nodes assembled in a compression-only configuration. The compression-only body is kept in equilibrium using the post-tensioning steel rods at the top and the bottom of the structure, supporting an ultra-thin glass structure on its top. A node-based assembly was considered as a method of construction. An innovative detailing was developed that allows locking each member in its exact location in the body, obviating the need for a particular assembly sequence. A bespoke steel connection transfers the tensile forces between the concrete members effectively. Achieving a high level of efficiency in utilizing concrete for spatial systems requires a robust and powerful structural design and fabrication approach that has been meticulously exhibited in this project. The structural form of the project was developed using a three-dimensional geometry-based structural design method known as 3D Graphic Statics with precise control over the magnitude of the lateral forces in the system. The entire concrete body of the structure is held in compression by the tension ties at the top and bottom of the structure with no horizontal reactions at the supports. This particular internal distribution of forces in the form of the compression-only body reduces the bending moment in the system and, therefore, the required mass to span such a distance.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia20_228
id acadia20_228
authors Alawadhi, Mohammad; Yan, Wei
year 2020
title BIM Hyperreality
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 228-236.
doi https://doi.org/10.52842/conf.acadia.2020.1.228
summary Deep learning is expected to offer new opportunities and a new paradigm for the field of architecture. One such opportunity is teaching neural networks to visually understand architectural elements from the built environment. However, the availability of large training datasets is one of the biggest limitations of neural networks. Also, the vast majority of training data for visual recognition tasks is annotated by humans. In order to resolve this bottleneck, we present a concept of a hybrid system—using both building information modeling (BIM) and hyperrealistic (photorealistic) rendering—to synthesize datasets for training a neural network for building object recognition in photos. For generating our training dataset, BIMrAI, we used an existing BIM model and a corresponding photorealistically rendered model of the same building. We created methods for using renderings to train a deep learning model, trained a generative adversarial network (GAN) model using these methods, and tested the output model on real-world photos. For the specific case study presented in this paper, our results show that a neural network trained with synthetic data (i.e., photorealistic renderings and BIM-based semantic labels) can be used to identify building objects from photos without using photos in the training data. Future work can enhance the presented methods using available BIM models and renderings for more generalized mapping and description of photographed built environments.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_046
id caadria2020_046
authors Alva, Pradeep, Lee, Han Jie, Lin, Zhuoli, Mehta, Palak, Chen, Jielin and Janssen, Patrick
year 2020
title Geo-computation for District Planning - An Agile Automated Modelling Approach
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 793-802
doi https://doi.org/10.52842/conf.caadria.2020.1.793
summary This paper focuses on developing a novel geo-computational methodology for automating the generation of design options for district planning. The knowledge contribution focuses on the ability of the planners and designers to interact with and override the automated process. This approach is referred to as "agile automated modelling". The approach is demonstrated through a case study in which three adjacent districts are generated with a total area of approximately 1300 hectares. An automated modelling process is implemented based on a set of core planning principles established by the planners. The automated process generates street networks, land parcels, and 3-dimensional urban models. The process is broken down into three steps and users are then able to intervene at the end of every step to override and modify the outputs. This aims to help planners and designers to iteratively generate and assess various planning outcomes.
keywords Geo-computation; procedural modelling; GIS; planning automation; neural network
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_193
id ecaade2020_193
authors Alymani, Abdulrahman, Jabi, Wassim and Corcoran, Padraig
year 2020
title Machine Learning Methods for Clustering Architectural Precedents - Classifying the relationship between building and ground
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 643-652
doi https://doi.org/10.52842/conf.ecaade.2020.1.643
summary Every time an object is built, it creates a relationship with the ground. Architects have a full responsibility to design the building by taking the ground into consideration. In the field of architecture, using data mining to identify any unusual patterns or emergent architectural trends is a nascent area that has yet to be fully explored. Clustering techniques are an essential tool in this process for organising large datasets. In this paper, we propose a novel proof-of-concept workflow that enables a machine learning computer system to cluster aspects of an architect's building design style with respect to how the buildings in question relate to the ground. The experimental workflow in this paper consists of two stages. In the first stage, we use a database system to collect, organise and store several significant architectural precedents. The second stage examines the most well-known unsupervised learning algorithm clustering techniques which are: K-Means, K-Modes and Gaussian Mixture Models. Our experiments demonstrated that the K-means clustering algorithm method achieves a level of accuracy that is higher than other clustering methods. This research points to the potential of AI in helping designers identify the typological and topological characteristics of architectural solutions and place them within the most relevant architectural canons
keywords Machine Learning; Building and Ground Relationship; Clustering Algorithms; K-means cluster Algorithms
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2022_16
id ecaade2022_16
authors Bailey, Grayson, Kammler, Olaf, Weiser, Rene, Fuchkina, Ekaterina and Schneider, Sven
year 2022
title Performing Immersive Virtual Environment User Studies with VREVAL
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 437–446
doi https://doi.org/10.52842/conf.ecaade.2022.2.437
summary The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learns the relationship between building geometry, typology, and construction type with the Global Warming potential (GWP) in tons of C02 equivalent (tCO2e). The first one, a regression model, can predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly through early predictions of the structure’s material and can be used as a tool for facilitating sustainable discussions between the architect and the client.
keywords Pre-Occupancy Evaluation, Immersive Virtual Environment, Wayfinding, User Centered Design, Architectural Study Design
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia20_120
id acadia20_120
authors Barsan-Pipu, Claudiu; Sleiman, Nathalie; Moldovan, Theodor
year 2020
title Affective Computing for Generating Virtual Procedural Environments Using Game Technologies
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 120-129.
doi https://doi.org/10.52842/conf.acadia.2020.2.120
summary Architects have long sought to create spaces that can relate to or even induce specific emotional conditions in their users, such as states of relaxation or engagement. Dynamic or calming qualities were given to these spaces by controlling form, perspective, lighting, color, and materiality. The actual impact of these complex design decisions has been challenging to assess, from both quantitative and qualitative standpoints, because neural empathic responses, defined in this paper by feature indexes (FIs) and mind indexes (MIs), are highly subjective experiences. Recent advances in the fields of virtual procedural environments (VPEs) and virtual reality (VR), supported by powerful game engine (GE) technologies, provide computational designers with a new set of design instruments that, when combined with brain-computing interfacing (BCI) and eye-tracking (E-T) hardware, can be used to assess complex empathic reactions. As the COVID-19 health crisis showed, virtual social interaction becomes increasingly relevant, and the social catalytic potential of VPEs can open new design possibilities. The research presented in this paper introduces the cyber-physical design of such an affective computing system. It focuses on how relevant empathic data can be acquired in real time by exposing subjects within a dynamic VR-based VPE and assessing their emotional responses while controlling the actual generative parameters via a live feedback loop. A combination of VR, BCI, and E-T solutions integrated within a GE is proposed and discussed. By using a VPE inside a BCI system that can be accurately correlated with E-T, this paper proposes to identify potential morphological and lighting factors that either alone or combined can have an empathic effect expressed by the relevant responses of the MIs.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2020_227
id ecaade2020_227
authors Bielski, Jessica, Langenhan, Christoph, Weyand, Babara, Neuber, Markus, Eisenstadt, Viktor and Althoff, Klaus-Dieter
year 2020
title Topological Queries and Analysis of School Buildings Based on Building Information Modeling (BIM) Using Parametric Design Tools and Visual Programming to Develop New Building Typologies
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 279-288
doi https://doi.org/10.52842/conf.ecaade.2020.2.279
summary School buildings are currently one of the largest portions of planning and building projects in Germany. In order to reflect the continuous developments in school building construction with constantly changing spatial requirements, an approach to analyse, derive and combine patterns of schools is proposed to adapt school typologies accordingly. Therefore, the topology is analysed, concerning interconnection methods, such as adjacency, accessibility, depth, and flow. The geometric analysis of e.g. room sizes or spatial proportions is enhanced by including grouping of rooms, estimated room clusters, or room shapes. Furthermore, text-matching is used to determine e.g. room program fulfilment, or assigning functional room descriptions to predefined room types, revealing huge differences of terms throughout time and architects. First results of the analyses show a relevant correlation between spatial proportion and room types.
keywords school building typologies; building information modeling (BIM); artificial intelligence (AI); topology; spatial analysis; digital semantic model
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2024_222
id ecaade2024_222
authors Bindreiter, Stefan; Sisman, Yosun; Forster, Julia
year 2024
title Visualise Energy Saving Potentials in Settlement Development: By linking transport and energy simulation models for municipal planning
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 79–88
doi https://doi.org/10.52842/conf.ecaade.2024.2.079
summary To achieve Sustainable Development Goals, in addition to the switch to sustainable energy sources and energy-efficient buildings, transport offers a major lever for reducing energy consumption and greenhouse gases. The increasing demand for emission-free mobility (e.g. through electromobility) but also heat pumps has a direct impact on the electricity consumption of buildings and settlements. It is still difficult to simulate the effects and interactions of different measures as sector coupling concepts require comprehensible tools for ex ante evaluation of planning measures at the community level and the linking of domain-specific models (energy, transport). Using the municipality of Bruck an der Leitha (Austria) as an example, a digital twin based on an open data model (Bednar et al., 2020) is created for the development of methods, which can be used to simulate measures to improve the settlement structure within the municipality. Forecast models for mobility (Schmaus, 2019; Ritz, 2019) and the building stock are developed or applied and linked via the open data model to be able to run through development scenarios and variants. The forecasting and visualisation options created in the project form the basis for the ex-ante evaluation of measures and policies on the way to a Positive-Energy-District. By identifying and collecting missing data, data gaps are filled for the simulation of precise models in the specific study area. A digital, interactive 3D model is created to examine the forecast results and the different scenarios.
keywords visualisation, decision support, sector coupling, holistic spatial energy models for municipal planning, (energy) saving potentials in settlement development
series eCAADe
email
last changed 2024/11/17 22:05

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_142468 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002