CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id caadria2020_051
id caadria2020_051
authors Homolja, Mitra, Maghool, Sayyed Amir Hossain and Schnabel, Marc Aurel
year 2020
title The Impact of Moving through the Built Environment on Emotional and Neurophysiological State - A Systematic Literature Review
doi https://doi.org/10.52842/conf.caadria.2020.1.641
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 641-650
summary Despite theoretical evidence about the capabilities of visual properties of space for manipulating inhabitants' emotions, a gap in knowledge exists for empirical studies in controlled environments. Interdisciplinary studies at the intersection of architecture, psychology, and neuroscience can provide robust guidelines and criteria for designers to engineer emotions. Due to the novelty of the field, the theoretical framework for such studies is not well established. Consequently, this paper presents a systematic literature review to find and synthesize recent relevant studies at this intersection. Based on these findings, we will investigate the impact of other visuo-spatial stimuli on emotions in a rigorous way. According to the theories of emotions, manipulation of emotions is linked to oscillations in physiological responses caused by exposure to sensory stimuli. Moreover, there is a consensus that human perception is action-oriented. Therefore, our review focuses on studies that employ biosensors as subjects move in physical or virtual environments.
keywords Neuroarchitecture; Brain Body Sensors; Virtual Reality; Physiological Response; Emotional Response
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2021_260
id sigradi2021_260
authors Lima Ferreira, Claudio and Vaz Lima, Larissa
year 2021
title Architecture and Neuroscience: Green Areas Contributions to Hospitalized Patients’ Homeostasis
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 927–939
summary Hospitalization is, for the patient, a neuropsychophysiological stressor, thus pertinent theories point to architectural stimuli as a tool for the homeostasis restoration and consequent well-being. Furthermore, they compile advantages to the patients’ treatment and highlight, mainly, the natural environments benefits, which is elucidated by the Biophilia theory. Through literature review and analysis of applied research in national and international hospitals, extracted from indexing databases of scientific production in the 2000-2020 timeframe, it was found that these areas [a] promote stimuli that enhance emotions and positive feelings; [b] act to restore stress and anxiety; [c] reduce pain, analgesic intake and length of stay; and [d] increase patient satisfaction. By sharing the results of this research, the objective is, in addition to stimulating future research on the organism behavior in the environments, to indicate perspectives for hospital ambiences.
keywords Neurociencias, Arquitetura Hospitalar, Áreas Verdes, Biophilia, Equilíbrio Homeostático.
series SIGraDi
email
last changed 2022/05/23 12:11

_id acadia16_470
id acadia16_470
authors Sollazzo, Aldo; Baseta, Efilena; Chronis, Angelos
year 2016
title Symbiotic Associations
doi https://doi.org/10.52842/conf.acadia.2016.470
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 470-477
summary Soil contamination poses a series of important health issues, following years of neglect, constant industrialization, and unsustainable agriculture. It is estimated that 30% of the total cultivated soil in the world will convert to degraded land by 2020 (Rashid et al. 2016). Finding suitable treatment technologies to clean up contaminated water and soil is not trivial, and although technological solutions are sought, many are both resource-expensive and potentially equally unsustainable in long term. Bacteria and fungi have proved efficient in contributing to the bioavailability of nutrients and in aggregating formation in degraded soils (Rashid et al. 2016). Our research aims to explore the possible implementation of physical computing, computational analysis, and digital fabrication techniques in the design and optimization of an efficient soil remediation strategy using mycelium. The study presented here is a first step towards an overarching methodology for the development of an automated soil decontamination process, using an optimized bio-cell fungus seed that can be remotely populated using aerial transportation. The presented study focuses on the development of a methodology for capturing and modeling the growth of the mycelium fungus using photogrammetry-based 3D scanning and computational analysis techniques.
keywords computational design, photogrammetry, simulation, mycelium, 3d scanning, growth strategies
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ijac202018102
id ijac202018102
authors Seifert, Nils; Michael Mühlhaus and Frank Petzold
year 2020
title Urban strategy playground: Rethinking the urban planner’s toolbox
source International Journal of Architectural Computing vol. 18 - no. 1, 20-40
summary This article presents the results of the Urban Strategy Playground research group. Over the last 5 years, the focus of an interdisciplinary team of researchers was the conception, implementation and evaluation of a decision-support system for inner-city urban and architectural planning. The overall aim of past and ongoing research is to enable planners to validate and compare possible planning measures based on objective criteria. The Urban Strategy Playground software framework is an expandable toolbox that supports planners in developing strategies, evaluating them and visually preparing them for political decision-making processes and public participation. Examples of implemented tools are the simulation and monitoring of building codes, analysis of key density indicators and green space provision, simulation of shading, building energy and noise dispersion. For visualising the planning results, the framework provides interfaces for rapid prototyping of haptic models, as well as web viewers and a connection to Augmented Reality applications. Core aspects of the system were evaluated through case studies in cooperation with urban planning offices, housing companies and municipalities, proving feasibility, high acceptance of the decision-support software, and need for more tailored tools.
keywords Urban planning, decision support, participation, augmented reality, 3D printing, visual programming, 3D city model
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_284
id ecaade2020_284
authors Tan, Rachel, Patt, Trevor, Koh, Seow Jin and Chen, Edmund
year 2020
title Exploration & Validation - Making sense of generated data in large option sets
doi https://doi.org/10.52842/conf.ecaade.2020.1.653
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 653-662
summary The project is a real-world case study where we advised our client in the selection of a viable and well-performing design from a set of computationally generated options. This process was undertaken while validating the algorithmic generative process and user-defined evaluation criteria through scrutinizing the other alternative options to ensure ample variability was considered. Optimisation algorithms were not ideal as low performing options were not visible to validate variability. We established variability by extracting the different groups of options, proving to the client that various operational behaviours were present and accounted for. In order to sieve through the noise and derive meaningful results, we employed methods to filter through thousands of options, including: k-means clustering, archetypal labelling and analysis, pareto front analysis and visualisation overlays. We present a sense-making and decision-making process that utilizes principles of genetic algorithms and analysis of multi-dimensional user-derived evaluation scores. To enable the client's confidence in the computational model, we proved the effectiveness of the generative model through communicating and visualizing the impact of different criterias. This ensured that operational needs were considered. The visualization methods we employed, including pareto front extraction and analysis eventually helped our clients to arrive at a decision.
keywords generative design; validation; multi-objective optimisation; k-means; pareto front; decision-making
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_484
id ecaade2020_484
authors Aguilar, Pavel, Borunda, Luis and Pardal, Cristina
year 2020
title Additive Manufacturing of Variable-Density Ceramics, Photocatalytic and Filtering Slats
doi https://doi.org/10.52842/conf.ecaade.2020.1.097
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 97-106
summary Additive Manufacturing (AM) offers the potential development of novel architectural applications of ceramic building components that can be engineered at the level of material to the extent of designing its performance and properties by density variations. This research presents a computational method and fabrication technique emulating complex material behavior via AM of intricate geometries and presents components with photocatalytic and climatic properties. It proposes an innovative application of AM of ceramic components in architecture to explore potential bioclimatic and antipollution performative use. Lattices are defined and manufactured with density variation gradients by tracing rectilinear clay deposition toolpaths that induce porosity intended for fluid filtering and to maximize sun exposure. The design method for photocatalytic, particle filtration and evaporative cooling local characterization introduced by complex patterning elements in architectural envelope slat components processed with radiation analysis influenced design are validated by simulation and experimental testing on specimens manufactured by paste extrusion.
keywords Ceramic 3D Printing; Paste Extrusion; Photocatalytic Filter; Performative Design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_66
id acadia20_66
authors Aviv, Dorit; Wang, Zherui; Meggers, Forrest; Ida, Aletheia
year 2020
title Surface Generation of Radiatively-Cooled Building Skin for Desert Climate
doi https://doi.org/10.52842/conf.acadia.2020.1.066
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 66-73.
summary A radiatively cooled translucent building skin is developed for desert climates, constructed out of pockets of high heat-capacity liquids. The liquids are contained by a wavelength-selective membrane enclosure, which is transmissive in the infrared range of electromagnetic radiation but reflective in the shortwave range, and therefore prevents overheating from solar radiation and at the same time allows for passive cooling through exposure of its thermal mass to the desert sky. To assess the relationship between the form and performance of this envelope design, we develop a feedback loop between computational simulations, analytical models, and physical tests. We conduct a series of simulations and bench-scale experiments to determine the thermal behavior of the proposed skin and its cooling potential. Several materials are considered for their thermal storage capacity. Hydrogel cast into membrane enclosures is tested in real climate conditions. Slurry phase change materials (PCM) are also considered for their additional heat storage capacity. Challenges of membrane welding patterns and nonuniform expansion of the membrane due to the weight of the enclosed liquid are examined in both digital simulations and physical experiments. A workflow is proposed between the radiation analysis based on climate data, the formfinding simulations of the elastic membrane under the liquid weight, and the thermal storage capacity of the overall skin.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_316
id caadria2020_316
authors Czynska, Klara
year 2020
title Computational Methods for Examining Reciprocal Relations between the Viewshed of Planned Facilities and Historical Dominants - Their integration within the cultural landscape
doi https://doi.org/10.52842/conf.caadria.2020.1.853
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 853-862
summary The article presents a methodology for the assessment of the impact of new buildings on the cultural landscape, in particular the exposure of historical landmarks. While using digital analysis and a 3D city model, the methodology examines reciprocal visual relations between historical and planned buildings. The following methods have been used: a) Visual Impact Size (VIS) which enables to determine a visual impact area and the degree of architectural facility domination in space; b) comparative analysis (cumulative viewshed) which enables to determine areas where viewsheds of new investment and historical buildings overlap; c) simulation of selected views from the level of human eyesight. The proposed landscape examination methodology has been presented using the case study of Katowice, Poland. The goal was to determine reciprocal relations between historical landmarks of the Silesia Museum and tall buildings planned in the vicinity. The study used a Digital Surface Model (DSM), a 3D city model. All simulations have been performed using software developed by the author (C++).
keywords cumulative viewshed; digital cityscape analysis; historical dominants; visual impact; VIS method
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2022_102
id ascaad2022_102
authors Turki, Laila; Ben Saci, Abdelkader
year 2022
title Generative Design for a Sustainable Urban Morphology
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 434-449
summary The present work concerns the applications of generative design for sustainable urban fabric. This represents an iterative process that involves an algorithm for the generation of solar envelopes to satisfy solar and density constraints. We propose in this paper to explore a meta-universe of human-machine interaction. It aims to design urban forms that offer solar access. This being to minimize heating energy expenditure and provide solar well-being. We propose to study the impact of the solar strategy of building morphosis on energy exposure. It consists of determining the layout and shape of the constructions based on the shading cut-off time. This is a period of desirable solar access. We propose to define it as a balance between the solar irradiation received in winter and that received in summer. We rely on the concept of the solar envelope defined since the 1970s by Knowles and its many derivatives (Koubaa Turki & al., 2020). We propose a parametric model to generate solar envelopes at the scale of an urban block. The generative design makes it possible to create a digital model of the different density solutions by varying the solar access duration. The virtual environment created allows exploring urban morphologies resilient both to urban densification and better use of the context’s resources. The seasonal energy balance, between overexposure in summer and access to the sun in winter, allows reaching high energy and environmental efficiency of the buildings. We have developed an algorithm on Dynamo for the generation of the solar envelope by shading exchange. The program makes it possible to detect the boundaries of the parcels imported from Revit, establish the layout of the building, and generate the solar envelopes for each variation of the shading cut-off time. It also calculates the FAR1 and the FSI2 from the variation of the shading cut-off time for each parcel of the island. We compare the solutions generated according to the urban density coefficients and the solar access duration. Once the optimal solution has been determined, we export the results back into Revit environment to complete the BIM modelling for solar study. This article proposes a method for designing buildings and neighbourhoods in a virtual environment. The latter acts upstream of the design process and can be extended to the different phases of the building life cycle: detailed design, construction, and use.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id sigradi2020_9
id sigradi2020_9
authors Felipe, Bárbara L.; Nome, Carlos
year 2020
title Digital Fabrication Techniques: A systematic literature review
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 9-16
summary The materialization of architectural forms uses new processes aided by digital manufacturing techniques (FD). Five FD techniques stand out: sectioning (serial planes), tessellation, folding, contouring, and forming. This article's objective is to characterize the state of the art of these techniques, from 2009 to 2020 in national and international research bases. The Systematic Literature Review is used from three stages and nine protocol phases. The results indicate the techniques, methods, computer simulations, and applicability in more recurrent materials.
keywords Digital Fabrication techniques, Digital Fabrication, Algorithmic Architecture; Parametric Design.
series SIGraDi
email
last changed 2021/07/16 11:48

_id sigradi2020_392
id sigradi2020_392
authors Fialho, Beatriz Campos; Codinhoto, Ricardo; Fabricio, Márcio Minto
year 2020
title BIM and IoT for the AEC Industry: A systematic literature mapping
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 392-399
summary The AEC industry has been facing a digital transformation for improving services involved in buildings lifecycle, fostered by two disruptive technologies: Building Information Modelling (BIM) and Internet of Things (IoT). However, the literature lacks discussions regarding applications and challenges of BIM and IoT systems in the AEC. This Systematic Literature Mapping addresses this gap through search, analysis, and classification of 75 journal article abstracts published between 2015 and 2019. An increase of articles over the period is observed, predominantly with technical and processual solutions for Construction and Operation and Maintenance. The interoperability of data is a key challenge to organizations.
keywords Building Information Modelling, Internet of Things, Integration, Network, Smart Cities
series SIGraDi
email
last changed 2021/07/16 11:49

_id cdrf2019_297
id cdrf2019_297
authors H. Mohamed, D. W. Bao, and R. Snooks
year 2020
title Super Composite: Carbon Fibre Infused 3D Printed Tectonics
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_28
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This research posits an innovative process of embedding carbon fibre as the primary structure within large-scale polymer 3D printed intricate architectural forms. The design and technical implications of this research are explored and demonstrated through two proto-architectural projects, Cloud Affects and Unclear Cloud, developed by the RMIT Architecture Snooks Research Lab. These projects are designed through a tectonic approach that we describe as a super composite – an approach that creates a compression of tectonics through algorithmic selforganisation and advanced manufacturing. Framed within a critical view of the lineage of polymer 3D printing and high tech fibres in the field of architectural design, the research outlines the limitations of existing robotic processes employed in contemporary carbon fibre fabrication. In response, the paper proposes an approach we describe asInfused Fibre Reinforced Plastic (IFRP) as a novel fabrication method for intricate geometries. This method involves 3D printing of sacrificial formwork conduits within the skin of complex architectural forms that are infused with continuous carbon fibre structural elements. Through detailed observation and critical review of Cloud Affects and Unclear Cloud (Fig. 2), the paper assesses innovations and challenges of this research in areas including printing, detailing, structural analysis and FEA modelling. The paper notes how these techniques have been refined through the iterative design of the two projects, including the development of fibre distribution mapping to optimise the structural performance.
series cdrf
email
last changed 2022/09/29 07:51

_id sigradi2020_52
id sigradi2020_52
authors Hadi, Khatereh; Gomez, Paula; Swarts, Matthew; Marshall, Tyrone; Bernal, Marcelo
year 2020
title Healthcare Design Metrics for Human-Centric Building Analytics
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 52-59
summary Healthcare design practice has shown increasing interest in the assessment of design alternatives from a human-centered approach, focusing on organizational performance, patient health, and wellness outcomes, in addition to building performance. The goal of this research is to advance building analytics by identifying, defining and implementing computational human-centered design metrics. The knowledge is extracted from an exhaustive literature review in the field of evidence-based design (EBD), which has studied the associations between building features and the occupants’ outcomes but has not yet consolidated the findings into metrics and implications for design practice in a systematic manner. In consultation with industry experts, we have prioritized the evaluation aspects and developed a weighted evaluation framework for assessment of various design options. The developed metrics that input building parameters and output potential health and performance outcomes are implemented in a a parametric environment utilizing add-ons accordingly, and using an ambulatory clinic designed by Perkins&Will as a case study.
keywords Building analytics, Healthcare design, Design metrics, Human-centered analytics
series SIGraDi
email
last changed 2021/07/16 11:48

_id ijac202018407
id ijac202018407
authors Marcelo Bernal, Victor Okhoya, Tyrone Marshall, Cheney Chen and John Haymaker
year 2020
title Integrating expertise and parametric analysis for a data-driven decision-making practice
source International Journal of Architectural Computing vol. 18 - no. 4, 424–440
summary This study explores the integration of expert design intuition and parametric data analysis. While traditional professional design expertise helps to rapidly frame relevant aspects of the design problem and produce viable solutions, it has limitations in addressing multi-criteria design problems with conflicting objectives. On the other hand, parametric analysis, in combination with data analysis methods, helps to construct and analyze large design spaces of potential design solutions and tradeoffs, within a given frame. We explore a process whereby expert design teams propose a design using their current intuitive and analytical methods. That design is then further optimized using parametric analysis. This study specifically explores the specification of geometric and material properties of building envelopes for two typically conflicting objectives: daylight quality and energy consumption. We compare performance of the design after initial professional design exploration, and after parametric analysis, showing consistently significant performance improvement after the second process. The study explores synergies between intuitive and systematic design approaches, demonstrating how alignment can help expert teams efficiently and significantly improve project performance.
keywords Performance analysis, parametric analysis, design space, design expertise, data analysis, optimization
series journal
email
last changed 2021/06/03 23:29

_id acadia20_130
id acadia20_130
authors Newton, David
year 2020
title Anxious Landscapes
doi https://doi.org/10.52842/conf.acadia.2020.2.130
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 130-137.
summary Advances in the field of machine learning over the last decade have revolutionized artificial intelligence by providing a flexible means to build analytic, predictive, and generative models from large datasets, but the allied design disciplines have yet to apply these tools at the urban level to draw analytic insights on how the built environment might impact human health. Previous research has found numerous correlations between the built environment and both physical and mental health outcomes—suggesting that the design of our cities may have significant impacts on human health. Developing methods of analysis that can provide insight on the correlations between the built environment and human health could help the allied design disciplines shape our cities in ways that promote human health. This research addresses these issues and contributes knowledge on the use of deep learning (DL) methods for urban analysis and mental health, specifically anxiety. Mental health disorders, such as anxiety, have been estimated to account for the largest proportion of global disease burden. The methods presented allow architects, planners, and urban designers to make use of large remote-sensing datasets (e.g., satellite and aerial images) for design workflows involving analysis and generative design tasks. The research also contributes insight on correlations between anxiety prevalence and specific urban design features—providing actionable intelligence for the planning and design of the urban fabric.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_139
id ecaade2020_139
authors Zwierzycki, Mateusz
year 2020
title On AI Adoption Issues in Architectural Design - Identifying the issues based on an extensive literature review.
doi https://doi.org/10.52842/conf.ecaade.2020.1.515
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 515-524
summary An analysis of AI in design literature, compiled from almost 200 publications from the 1980s onwards. The majority of the sources are proceedings from various conferences. This work is inspired by the Ten Problems for AI in Design (Gero 1991) workshop report, which listed the problems to be tackled in design with AI. Almost 30 years since the publication, it seems most of the Ten Problems cannot be considered solved or even addressed. One of this paper's goals is to identify, categorize and examine the bottlenecks in the adoption of AI in design. The collected papers were analysed to obtain the following data: Problem, Tool, Solution, Stage and Future work. The conclusions drawn from the analysis are used to define a range of existing problems with AI adoption, further illustrated with an update to the Ten Problems. Ideally this paper will spark a discussion on the quality of research, methodology and continuity in research.
keywords artificial intelligence; review; design automation; knowledge representation; machine learning; expert system
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2020_120
id sigradi2020_120
authors Álvarez, Natalia; Bernal, Marcelo; Cáceres, Katherine
year 2020
title Evolution and Projection of Computational Design Theories: Generation, Analysis, Selection and Fabrication
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 120-127
summary We can identify a milestone in computational design theories in the intersection between paradigms derived from theories of complexity and technological developments in the early 90’s. These theories provided the l foundation to build interpretation of the potential of the technology by adopting a language based on complexity to frame processes of generation, analysis, selection and manufacturing. To better understand the roots and direction of computational design theories, this study makes an in-depth literature review of four vectors involved in the formation of current dominant theoretical and technical approaches: theories of complexity, technological developments, professional practice and academia. The information collected is organized in chronological order in parallel timelines to facilitate readings exposing the intersections and synergies. The results show the emergence of theoretical approaches based on the convergence of theories and technologies, proof of concept in professional practice and consolidation in academia.
keywords Generative Design, Performance Analysis, Data Analysis, Decision Making & Fabrication
series SIGraDi
email
last changed 2021/07/16 11:48

_id ijac202321102
id ijac202321102
authors Özerol, Gizem; Semra Arslan Selçuk
year 2023
title Machine learning in the discipline of architecture: A review on the research trends between 2014 and 2020
source International Journal of Architectural Computing 2023, Vol. 21 - no. 1, pp. 23–41
summary Abstract Through the recent technological developments within the fourth industrial revolution, artificial intelligence (AI) studies have had a huge impact on various disciplines such as social sciences, information communication technologies (ICTs), architecture, engineering, and construction (AEC). Regarding decision-making and forecasting systems in particular, AI and machine learning (ML) technologies have provided an opportunity to improve the mutual relationships between machines and humans. When the connection between ML and architecture is considered, it is possible to claim that there is no parallel acceleration as in other disciplines. In this study, and considering the latest breakthroughs, we focus on revealing what ML and architecture have in common. Our focal point is to reveal common points by classifying and analyzing current literature through describing the potential of ML in architecture. Studies conducted using ML techniques and subsets of AI technologies were used in this paper, and the resulting data were interpreted using the bibliometric analysis method. In order to discuss the state-of-the-art research articles which have been published between 2014 and 2020, main subjects, subsets, and keywords were refined through the search engines. The statistical figures were demonstrated as huge datasets, and the results were clearly delineated through Sankey diagrams. Thanks to bibliometric analyses of the current literature of WOS (Web of Science), CUMINCAD (Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD, and CAAD futures), predictable data have been presented allowing recommendations for possible future studies for researchers.
keywords Artificial intelligence, machine learning, deep learning, architectural research, bibliometric analysis
series journal
last changed 2024/04/17 14:30

_id sigradi2020_478
id sigradi2020_478
authors Costa, Phillipe Cunha da
year 2020
title Grey Boxes to Control? Cybernetic Surveillance in Urban Design
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 478-483
summary This paper is a critical essay on the role of intelligent systems in the 21st century and their usage in city optimization that planners and urban designers objectified control. Promulgated in the 2000s in urban design as a form of control, cybernetics became a useful tool and, today, with metropolitan epidemics, transportation, and information fluxes, this field became more visible in the expansion of parametric actions to control and surveil. This evidence had a clear paradox between the determinism of a transparent city and behaviorism of a black-box design, which is commonly sold – and controlled – as a smart city.
keywords Grey Box, Surveillance System, Box Theory, Smart City, Cybernetics
series SIGraDi
email
last changed 2021/07/16 11:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_10725 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002