CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 465

_id ecaade2020_185
id ecaade2020_185
authors Wurzer, Gabriel, Lorenz, Wolfgang E., Forster, Julia, Bindreiter, Stefan, Lederer, Jakob, Gassner, Andreas, Mitteregger, Mathias, Kotroczo, Erich, Pöllauer, Pia and Fellner, Johann
year 2020
title M-DAB - Towards re-using material resources of the city
doi https://doi.org/10.52842/conf.ecaade.2020.1.127
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 127-132
summary If we strive for a de-carbonized future, we need to think of buildings within a city as resources that can be re-used rather than being disposed of. Together with considerations on refurbishment options and future building materials, this gives a decision field for stakeholders which depends on the current "building stock" - the set of pre-existing buildings which are characterized e.g. by building period, location and material composition. Changes in that context are hard to argue for since (1.) some depend on statistics, other (2.) on the concrete neighborhood and thus the space in which buildings are embedded, yet again others on (3.) future extrapolations again dealing with both of the aforementioned environments. To date, there exists no tool that can handle this back-and-forth between different abstraction levels and horizons in time; nor is it possible to pursue such an endeavor without a proper framework. Which is why the authors of this paper are aiming to provide one, giving a model of change in the context of re-using material resource of the city, when faced with numerous abstraction levels (spatial or abstract; past, current or future) which have feedback loops between them. The paper focuses on a concrete case study in the city of Vienna, however, chances are high that this will apply to every other building stock throughout the world if enough data is available. As a matter of fact, this approach will ensure that argumentation can happen on multiple levels (spatial, statistical, past, now and future) but keeps its focus on making the building stock of a city a resource for sustainable development.
keywords material reuse; sustainability; waste reduction; Design and computation of urban and local systems – XS to XL; Health and materials in architecture and cities
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2020_253
id ecaade2020_253
authors Buš, Peter
year 2020
title User-driven Configurable Architectural Assemblies - Towards artificial intelligence-embedded responsive environments
doi https://doi.org/10.52842/conf.ecaade.2020.2.483
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 483-490
summary The paper theoretically elaborates the idea of individual users' customisation activities to create and configure responsive spatial scenarios by means of reconfigurable interactive adaptive assemblies. It reflects Gordon Pask's concept of human and device interaction based on its unpredictable notion speculating a potential to be enhanced by artificial intelligence learning approach of an assembly linked with human activator's participative inputs. Such a link of artificial intelligence, human agency and interactive assembly capable to generate its own spatial configurations by itself and users' stimuli may lead to a new understanding of humans' role in the creation of spatial scenarios. The occupants take the prime role in the evolution of spatial conditions in this respect. The paper aims to position an interaction between the human agents and artificial devices as a participatory and responsive design act to facilitate creative potential of participants as unique individuals without pre-specified or pre-programmed goal set by the designer. Such an approach will pave a way towards true autonomy of responsive built environments, determined by an individual human agent and behaviour of the spatial assemblies to create authentic responsive built forms in a digital and physical space.
keywords deployable systems; responsive assemblies; embedded intelligence; Learning-to-Design-and-Assembly method; Conversation Theory
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_708
id acadia20_708
authors Charbel, Hadin; López Lobato, Déborah
year 2020
title Between Signal and Noise
doi https://doi.org/10.52842/conf.acadia.2020.1.708
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 708-718.
summary Climate change continues to have noticeable and accelerated impacts on various territories. Previously predictable and recognizable patterns used by humans and nonhumans alike are perpetually being altered, turning localized signals into noise and effectively disrupting indigenous modes of life. While the use of certain technologies such as data collection, machine learning, and automation can render these otherwise patternless information streams into intelligible content, they are generally associated as being “territorializing,” as an increase in resolution generally lends itself to control, exploitation, and colonization. Contrarily, indigenous groups with long-lasting relationships that have evolved over time have distinct ways of reading and engaging with their contexts, developing sustainable practices that, while effective, are often overlooked as being compatible with contemporary tools. This paper examines how the use of traditionally territorializing technologies can be paired with indigenous knowledge and protocols in order to operate between signal and noise, rendering perverse changes in the landscape comprehensible while also presenting their applications as a facet for sociopolitical, cultural, and ecological adaptation. A methodology defined as “decoding” and “recoding” presents four distinct case studies in the Arctic, addressing various scales and targets with the aim of disrupting current trends in order to grant and/or retain autonomy through what can be read as a form of preservation via augmented adaptation.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_638
id acadia20_638
authors Claypool, Mollie; Jimenez Garcia, Manuel; Retsin, Gilles; Jaschke, Clara; Saey, Kevin
year 2020
title Discrete Automation
doi https://doi.org/10.52842/conf.acadia.2020.1.638
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 638-647.
summary Globally, the built environment is inequitable. And while construction automation is often heralded as the solution to labor shortages and the housing crisis, such methods tend to focus on technology, neglecting the wider socioeconomic contexts. Automated Architecture (AUAR), a spinoff of AUAR Labs at The Bartlett School of Architecture, UCL, asserts that a values-centered, decentralized approach to automation centered around local communities can begin to address this material hegemony. The paper introduces and discusses AUAR’s platform-based framework, Discrete Automation, which subverts the status quo of automation that excludes those who are already disadvantaged into an inclusive network capable of providing solutions to both the automation gap and the assembly problem. Through both the wider context of existing modular housing platforms and issues of the current use of automated technologies in architectural production, Discrete Automation is discussed through the example of Block Type A, a discrete timber building system, which in conjunction with its combinatorial app constitutes the base of a community-led housing platform developed by AUAR. Built case studies are introduced alongside a discussion of the applied methodologies and an outlook on the platform’s potential for scalability in an equitable, sustainable manner.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_098
id caadria2020_098
authors Davidova, Marie and McMeel, Dermott
year 2020
title Codesigning with Blockchain for Synergetic Landscapes - The CoCreation of Blockchain Circular Economy through Systemic Design
doi https://doi.org/10.52842/conf.caadria.2020.2.333
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 333-342
summary The paper is exploring methodology within the work in progress research by design through teaching project called 'Synergetic Landscapes'. It discusses codesign and cocreation processes that are crossing the academia, NGOs and applied practice within so called 'real life codesign laboratory' (Davidová, Pánek, & Pánková, 2018). This laboratory performs in real time and real life environment. The work investigates synergised bio-digital (living, non-living, physical, analogue, digital and virtual) prototypical interventions in urban environment that are linked to circular economy and life cycles systems running on blockchain. It represents a holistic systemic interactive and performing approach to design processes that involve living, habitational and edible, social and reproductive, circular and token economic systems. Those together are to cogenerate synergetic landscapes.
keywords codesign; blockchain; systemic design; prototyping; bio-digital design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_069
id caadria2020_069
authors Davidova, Marie and Zavoleas, Yannis
year 2020
title Post-Anthropocene:The Design after the Human Centered Design Age
doi https://doi.org/10.52842/conf.caadria.2020.2.203
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 203-212
summary The paper exemplifies possible traces of transition towards Post-Anthropocene that is envisioned as non-hierachical system. It is taking Morton's discussion on 'hyperobjectivity' further into multi-layered codesign performed in real time and real life across bio-digital agents, including humans. Though our planet might be recently experiencing drastic times and one catastrophic scenario follows the other, a natural succession often comes after most disasters.
keywords Post-Anthropocene; Systemic Design; Hyperobjects; CoDesign; Bio-Digital Design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_231
id caadria2020_231
authors Doe, Robert
year 2020
title sensMOD - Computational Design through the lens of Henri Lefebvre's Spatial Theory
doi https://doi.org/10.52842/conf.caadria.2020.1.701
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 701-710
summary Spatial productivity is the first of the elements comprising sensMOD, a student elective that implemented a methodology addressing the exigent need of our time for transformation in the architecture, engineering and construction (AEC) sector. The second and third elements of sensMOD are parts and interaction which focus attention on the nature of complexity and connectivity in our networked world. The paper proposes a methodology that was used to guide the teaching of an elective for third year architecture students at a UK university. Its wider purpose is to contribute to discussion concerning the dysfunctional state of an AEC sector that needs to consider its productivity as projections of wider networks of resource and energy relationships. Henri Lefebvre's spatial theory (1991) guides the narrative and formulation of sensMOD.
keywords computational design; spatial productivity; modularity; interaction design
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2020_190
id ecaade2020_190
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2020
title Smart Contracts for Decentralised Building Information Modelling
doi https://doi.org/10.52842/conf.ecaade.2020.2.565
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 565-574
summary The paper presents a model for decentralizing building information modelling, through implementing its infrastructure using the decentralized web. We discuss the shortcomings of BIM in terms of its infrastructure, with a focus on tracing identities of design authorship in this collective design tool. In parallel we examine the issues with BIM in the cloud and propose a decentralized infrastructure based on the Ethereum blockchain and the Interplanetary filesystem (IPFS). A series of computing nodes, that act as nodes on the Ethereum Blockchain, host disk storage with which they participate in a larger storage pool on the Interplanetary Filesystem. This storage is made available through an API is used by architects and designers creating and editing a building information model that resides on the IPFS decentralised storage. Through this infrastructure central servers are eliminated, and BIM libraries and models can be shared with others in an immutable and transparent manner. As such Architecture practices are able to exploit their intellectual property in novel ways, by making it public on the internet. The infrastructure also allows the decentralised creation of a resilient global pool of data that allows the participation of computation agents in the creation and simulation of BIM models.
keywords Blockchain; decentralisation; immutability; resilience; Building Information Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2019_79
id cdrf2019_79
authors Guyi Yi1 and Ilaria Di Carlo
year 2020
title Cyborgian Approach of Eco-interaction Design Based on Machine Intelligence and Embodied Experience
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_8
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary The proliferation of digital technology has swelled the amount of time people spent in cyberspace and weakened our sensibility of the physical world. Human beings in this digital era are already cyborgs as the smart devices have become an integral part of our life. Imagining a future where human totally give up mobile phones and embrace nature is neither realistic nor reasonable. What we should aim to explore is the opportunities and capabilities of digital technology in terms of fighting against its own negative effect - cyber addiction, and working as a catalyst that re-embeds human into outdoor world. Cyborgian systems behave through embedded intelligence in the environment and discrete wearable devices for human. In this way, cyborgian approach enables designers to take advantages of digital technologies to achieve two objectives: one is to improve the quality of environment by enhancing our understanding of nonhuman creatures; the other is to encourage a proper level of human participation without disturbing eco-balance. Finally, this paper proposed a cyborgian eco-interaction design model which combines top-down and bottom-up logics and is organized by the Internet of Things, so as to provide a possible solution to the concern that technologies are isolating human and nature.
series cdrf
email
last changed 2022/09/29 07:51

_id acadia20_300
id acadia20_300
authors H Arnardottir, Thora; Dade-Robertson, Martyn; Mitrani, Helen; Zhang, Meng; Christgen, Beate
year 2020
title Turbulent Casting
doi https://doi.org/10.52842/conf.acadia.2020.1.300
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 300-309.
summary There has been a growing interest in living materials and fabrication processes including the use of bacteria, algae, fungi, and yeast to offer sustainable alternatives to industrial materials synthesis. Microbially induced calcium carbonate precipitation (MICP) is a biomineralization process that has been widely researched to solve engineering problems such as concrete cracking and to strengthen soils. MICP can also be used as an alternative to cement in the fabrication of building materials and, because of the unique process of living fabrication, if we see bacteria as our design collaborators, new types of fabrication and processes may be possible. The process of biomineralization is inherently different from traditional fabrication processes that use casting or molding. Its properties are influenced by the active bacterial processes that are connected to the casting environment. Understanding and working with interrelated factors enables a novel casting approach and the exploration of a range of form types and materials of variable consistencies and structure. We report on an experiment with partial control of mineralization through the design of different experimental vessels to direct and influence the cementation process of sand. In order to capture the form of the calcification in these experiments, we have analyzed the results using three-dimensional imaging and a technique that excavates the most friable material from the cast in stages. The resulting scans are used to reconstruct the cementation timeline. This reveals a hidden fabrication/growth process. These experiments offer a different perspective on form finding in material fabrication.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_13
id cdrf2021_13
authors Hao Wen, Pengcheng Gu, Yuchao Zhang, Shuai Zou, and Patrik Schumacher
year 2021
title A Generative Approach to Social Ecologies in Project [Symbios]City
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_2
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary The following paper talks about the studio project [Symbios]City, which is developed as a design research project in 2020–2021 Schumacher’ studio on social ecology of the graduate program in Architectural Association’s design research lab. The project aims to create an assemblage of social ecologies through a rich but cohesive multi-authored urban district. The primary ambition is to generate an urban area with a characterful, varied identity, that achieves a balanced order between unity and difference avoiding both the sterile and disorienting monotony of centrally planned modernist cities and the (equally disorienting) visual chaos of an agglomeration of utterly unrelated interventions as we find now frequently. Through a thorough research process, our project evolves mainly out of three principles that are taken into consideration for the development of our project: topological optimization, phenomenology, and ecology. By “ecology”, we understand it as a living network of information exchange. Therefore, every strategy we employ is not merely about reacting to the weather conditions, but instead it is an inquiry into the various ways we can exploit the latter, a translation of the weather conditions into spatial and programmatic properties. [Symbios]City therefore aims at developing a multi-authored urban area with a rich identity that achieves a balance between the various elements. [Symbios]City began formally from topological optimization, developed based on studies on ecology, and concluded the design following our phenomenological explorations, aiming at a complex design project that unifies the perception of all scales of design: from the platform to the skyscrapers.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2020_245
id ecaade2020_245
authors Kampani, Anna and Varoudis, Tasos
year 2020
title Perceptive Machine - Visuospatial Configurations Through Machine Intuition
doi https://doi.org/10.52842/conf.ecaade.2020.1.419
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 419-428
summary Computational tools in architecture have yet to adequately address the issue of evaluating and informing design through the prism of visual perception in 3-dimensional environments. Previous research has demonstrated that although the issue of understanding and designing public spaces is of significant importance, existing methods of data representation in VR are not extensively investigated. The present paper reports on research into the development of a computational model that evaluates and visualises information regarding permeability of the urban fabric in a virtual environment. Primary aim is to create an additional layer for early design stages that will assist in projecting all information in VR space so that the user can explore and grasp through data the impact of each design step in an immersive, human scale.
keywords Computational Design; Virtual reality development; Machine Learning; Urban Analytics; Visual perception
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac202018106
id ijac202018106
authors Koronaki, Antiopi; Paul Shepherd and Mark Evernden
year 2020
title Rationalization of freeform space-frame structures: Reducing variability in the joints
source International Journal of Architectural Computing vol. 18 - no. 1, 84-99
summary In recent years, the application of space-frame structures on large-scale freeform designs has significantly increased due to their lightweight configuration and the freedom of design they offer. However, this has introduced a level of complexity into their construction, as doubly curved designs require non-uniform configurations. This article proposes a novel computational workflow that reduces the construction complexity of freeform space-frame structures, by minimizing variability in their joints. Space-frame joints are evaluated according to their geometry and clustered for production in compliance with the tolerance requirements of the selected fabrication process. This provides a direct insight into the level of customization required and the associated construction complexity. A subsequent geometry optimization of the space-frame’s depth minimizes the number of different joint groups required. The variables of the optimization are defined in relation to the structure’s curvature, providing a direct link between the structure’s geometry and the optimization process. Through the application of a control surface, the dimensionality of the design space is drastically reduced, rendering this method applicable to large-scale projects. A case study of an existing structure of complex geometry is presented, and this method achieves a significant reduction in the construction complexity in a robust and computationally efficient way.
keywords Geometry optimization, space-frame structures, joint, fabrication process, construction, cost, clustering, control surface
series journal
email
last changed 2020/11/02 13:34

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2020_089
id caadria2020_089
authors Poinet, Paul, Stefanescu, Dimitrie and Papadonikolaki, Eleni
year 2020
title Web-Based Distributed Design to Fabrication Workflows
doi https://doi.org/10.52842/conf.caadria.2020.1.095
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 95-104
summary As architectural design projects tend to tackle larger scales and become more complex, multiple involved actors often need to work from different remote locations. This increased complexity impacts the digital design-to-fabrication workflows that become more challenging, as each actor involved in a project operates on different software environments and needs to access precise fabrication data of specific design components. Consequently, managing and keeping track of design changes throughout the design-to-fabrication workflow still remains a challenge for all actors involved. This paper discusses how this challenge can be tackled through both Speckle, a complete open source data platform for the Architecture, Engineering and Construction (AEC), and SpeckleViz, a custom web-based interactive Activity Network Diagram (AND) built upon Speckle. SpeckleViz continuously maps data transfers across design and building processes, enabling the end-users to explore, interact and get a better understanding of the constantly evolving digital design workflows. This is demonstrated in this paper through a computational design and digital fabrication workshop conducted at the Centro de Estudios Superiores de Diseño de Monterrey (CEDIM), during which an integrative, file-less collaborative design workflow has been set through Speckle, connecting different Rhino-Grasshopper sessions acting as discrete computational design pipelines.
keywords Collaborative Workflows; Distributed Design; Activity Network Diagram; Data Flow
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2020_053
id ecaade2020_053
authors Ren, Yue, Chu, Jie and Zheng, Hao
year 2020
title Dynamic Symbiont - An Interactive Urban Design Method Combining Swarm Intelligence and Human Decisions
doi https://doi.org/10.52842/conf.ecaade.2020.1.383
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 383-392
summary Can a virtual city game be built by both the public and computer-based on real-site data? In the current process of deepening global connectivity, requirements for an effective urban design are no longer limited to functions or aesthetics, but a smart, dynamic complex with multi-interactions of data, group behaviours, and physical space. This paper introduces the logic of swarm intelligence and particle system for proposing a new urban design methodology. The platforms range from simulations that quantify the impact of the disruptive interventions of city activities to communicable collaboration between different users in a UI system, which creates virtual connections between optimized urbanscape and users. In the design system, based on the context data, the computer firstly simulates and optimizes the existing 2D activity joints between the people and analyzed the current spatial connection nodes into certain design rules. Through optimal programming for spatial connection and data iterations, the activity connection structures in the second simulation are abstracted into a set of interactive 3D topographic. The final data-visualization results are presented as a co-building megacity in a virtual construction game. Users can choose the virtual building unit types and intuitively influence the future urbanscape decision through virtual construction.
keywords Swarm Intelligence; Particle System; Digital Simulation; Human-Machine Interaction; Data Visualization
series eCAADe
email
last changed 2022/06/07 07:56

_id ijac202119406
id ijac202119406
authors Silva Dória, David Rodrigues; Ramaswami, Keshav; Claypool, Mollie; Retsin, Gilles
year 2021
title Public parts, resocialized autonomous communal life
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 568–593
summary Commoning embodies the product of social contracts and behaviors between groups of individuals. In thecase of social housing and the establishment of physical domains for life, commoning is an intersection of thesecontracts and the restrictions and policies that prohibit and allow them to occur within municipalities. Via aplatform-based project entitled Public Parts (2020), this article will also present positions on the reification ofthe common through a set of design methodologies and implementations of automation. This platform seeksto subvert typical platform models to decrease ownership, increase access, and produce a new form ofcommunal autonomous life amongst individuals that constitute the rapidly expanding freelance, work fromhome, and gig economies. Furthermore, this text investigates the consequences of merging domestic spacewith artificial intelligence by implementing machine learning to reconfigure spaces and program. Theproblems that arise from the deployment of machine learning algorithms involve issues of collection, usage,and ownership of data. Through the physical design of space, and a central AI which manages the platform andthe automated management of space, the core objective of Public Parts is to reify the common througharchitecture and collectively owned data.
keywords Common, housing, platforms, reification, artificial intelligence, automation
series journal
email
last changed 2024/04/17 14:29

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_366
id ecaade2020_366
authors Temizel, Ensar
year 2020
title The Cybernetic Relevance of Architecture:An Essay on Gordon Pask's Evolving Discourse on Architecture
doi https://doi.org/10.52842/conf.ecaade.2020.1.471
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 471-480
summary Gordon Pask, as one of the leading figures in the field of cybernetics, had an extensive impact on architecture through his lifelong connections with architectural circles in the UK and the USA from the early 1960s until his death in 1996. He is mostly known to architects by his collaboration with Cedric Price on a number of occasions; however, his affiliation with architecture include several other instances that involved designing architectural projects, teaching in architectural schools, writing on architectural issues and more. This paper aims to review these instances to scrutinize how his discourse on architecture unfolded in time by addressing his evolving understanding concerning the relationship between architecture and cybernetics. In doing so, the paper examines key aspects of his own work in relation to key instances of his relationship with architecture.
keywords Cybernetics; Architecture; Design; Gordon Pask; Conversation Theory; Human-Machine Interaction
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2024_60
id ecaade2024_60
authors Wan, Zijun; Sun, Shuaibing; Meng, Fanjing; Yan, Yu
year 2024
title How Augment Reality Support Public Participation in the Urban Design Decision-Making: A ten - year literature review
doi https://doi.org/10.52842/conf.ecaade.2024.2.455
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 455–464
summary Emerging applications of AR have demonstrated its powerful visualization capabilities, which is a potential solution to enhance public participation in the urban design process. However, there is still a lack of complete understanding of how AR gets involved in this decision-making process. Therefore, this paper reviews 33 empirical studies relating to the topic through the four steps of “PRISMA”. The results indicate that the quantity and quality of research is increasing yearly. As AR technology progresses, the techniques and research methods used in those studies show a trend toward diversification and customization; this has also led to a shift in the scale of urban design from large and abstract to small and concrete. In terms of content, the topics have gradually changed from “people group” to “technology”, and then to “environment”. Notably, a small number of cases in tangible interaction and multi-user collaboration have emerged from 2020 — areas showing great promise. In terms of user assessments, most studies give positive feedback, but there are currently concerns about problems in poor AR visualizations, privacy risks, and the social inequality caused by technical affordance.
keywords Augment reality, Urban design and planning, Public participation, Collaborative and participative design, Design decision-making
series eCAADe
email
last changed 2024/11/17 22:05

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_113847 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002