CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 641

_id ecaade2020_017
id ecaade2020_017
authors Chan, Yick Hin Edwin and Spaeth, A. Benjamin
year 2020
title Architectural Visualisation with Conditional Generative Adversarial Networks (cGAN). - What machines read in architectural sketches.
doi https://doi.org/10.52842/conf.ecaade.2020.2.299
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 299-308
summary As a form of visual reasoning, sketching is a human cognitive activity instrumental to architectural design. In the process of sketching, abstract sketches invoke new mental imageries and subsequently lead to new sketches. This iterative transformation is repeated until the final design emerges. Artificial Intelligence and Deep Neural Networks have been developed to imitate human cognitive processes. Amongst these networks, the Conditional Generative Adversarial Network (cGAN) has been developed for image-to-image translation and is able to generate realistic images from abstract sketches. To mimic the cyclic process of abstracting and imaging in architectural concept design, a Cyclic-cGAN that consists of two cGANs is proposed in this paper. The first cGAN transforms sketches to images, while the second from images to sketches. The training of the Cyclic-cGAN is presented and its performance illustrated by using two sketches from well-known architects, and two from architecture students. The results show that the proposed Cyclic-cGAN can emulate architects' mode of visual reasoning through sketching. This novel approach of utilising deep neural networks may open the door for further development of Artificial Intelligence in assisting architects in conceptual design.
keywords visual cognition; design computation; machine learning; artificial intelligence
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2020_342
id caadria2020_342
authors Han, Yoojin and Lee, Hyunsoo
year 2020
title A Deep Learning Approach for Brand Store Image and Positioning - Auto-generation of Brand Positioning Maps Using Image Classification
doi https://doi.org/10.52842/conf.caadria.2020.2.689
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 689-696
summary This paper presents a deep learning approach to measuring brand store image and generating positioning maps. The rise of signature brand stores can be explained in terms of brand identity. Store design and architecture have been highlighted as effective communicators of brand identity and position but, in terms of spatial environment, have been studied solely using qualitative approaches. This study adopted a deep learning-based image classification model as an alternative methodology for measuring brand image and positioning, which are conventionally considered highly subjective. The results demonstrate that a consistent, coherent, and strong brand identity can be trained and recognized using deep learning technology. A brand positioning map can also be created based on predicted scores derived by deep learning. This paper also suggests wider uses for this approach to branding and architectural design.
keywords Deep Learning; Image Classification; Brand Identity; Brand Positioning Map; Brand Store Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id cdrf2019_103
id cdrf2019_103
authors Runjia Tian
year 2020
title Suggestive Site Planning with Conditional GAN and Urban GIS Data
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_10
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary In architecture, landscape architecture, and urban design, site planning refers to the organizational process of site layout. A fundamental step for site planning is the design of building layout across the site. This process is hard to automate due to its multi-modal nature: it takes multiple constraints such as street block shape, orientation, program, density, and plantation. The paper proposes a prototypical and extensive framework to generate building footprints as masterplan references for architects, landscape architects, and urban designers by learning from the existing built environment with Artificial Neural Networks. Pix2PixHD Conditional Generative Adversarial Neural Network is used to learn the mapping from a site boundary geometry represented with a pixelized image to that of an image containing building footprint color-coded to various programs. A dataset containing necessary information is collected from open source GIS (Geographic Information System) portals from the city of Boston, wrangled with geospatial analysis libraries in python, trained with the TensorFlow framework. The result is visualized in Rhinoceros and Grasshopper, for generating site plans interactively.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2020_018
id ecaade2020_018
authors Sato, Gen, Ishizawa, Tsukasa, Iseda, Hajime and Kitahara, Hideo
year 2020
title Automatic Generation of the Schematic Mechanical System Drawing by Generative Adversarial Network
doi https://doi.org/10.52842/conf.ecaade.2020.1.403
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 403-410
summary In the front-loaded project workflow, mechanical, electrical, and plumbing (MEP) design requires precision from the beginning of the design phase. Leveraging insights from as-built drawings during the early design stage can be beneficial to design enhancement. This study proposes a GAN (Generative Adversarial Networks)-based system which populates the fire extinguishing (FE) system onto the architectural drawing image as its input. An algorithm called Pix2Pix with the improved loss function enabled such generation. The algorithm was trained by the dataset, which includes pairs of as-built building plans with and without FE equipment. A novel index termed Piping Coverage Rate was jointly proposed to evaluate the obtained results. The system produces the output within 45 seconds, which is drastically faster than the conventional manual workflow. The system realizes the prompt engineering study learned from past as-built information, which contributes to further the data-driven decision making.
keywords Generative Adversarial Network; MEP; as-built drawing; automated design; data-driven design
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2020_054
id caadria2020_054
authors Shen, Jiaqi, Liu, Chuan, Ren, Yue and Zheng, Hao
year 2020
title Machine Learning Assisted Urban Filling
doi https://doi.org/10.52842/conf.caadria.2020.2.679
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 679-688
summary When drawing urban scale plans, designers should always define the position and the shape of each building. This process usually costs much time in the early design stage when the condition of a city has not been finally determined. Thus the designers spend a lot of time working forward and backward drawing sketches for different characteristics of cities. Meanwhile, machine learning, as a decision-making tool, has been widely used in many fields. Generative Adversarial Network (GAN) is a model frame in machine learning, specially designed to learn and generate image data. Therefore, this research aims to apply GAN in creating urban design plans, helping designers automatically generate the predicted details of buildings configuration with a given condition of cities. Through the machine learning of image pairs, the result shows the relationship between the site conditions (roads, green lands, and rivers) and the configuration of buildings. This automatic design tool can help release the heavy load of urban designers in the early design stage, quickly providing a preview of design solutions for urban design tasks. The analysis of different machine learning models trained by the data from different cities inspires urban designers with design strategies and features in distinct conditions.
keywords Artificial Intelligence; Urban Design; Generative Adversarial Networks; Machine Learning
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2022_209
id cdrf2022_209
authors Yecheng Zhang, Qimin Zhang, Yuxuan Zhao, Yunjie Deng, Feiyang Liu, Hao Zheng
year 2022
title Artificial Intelligence Prediction of Urban Spatial Risk Factors from an Epidemic Perspective
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_18
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary From the epidemiological perspective, previous research methods of COVID-19 are generally based on classical statistical analysis. As a result, spatial information is often not used effectively. This paper uses image-based neural networks to explore the relationship between urban spatial risk and the distribution of infected populations, and the design of urban facilities. We take the Spatio-temporal data of people infected with new coronary pneumonia before February 28 in Wuhan in 2020 as the research object. We use kriging spatial interpolation technology and core density estimation technology to establish the epidemic heat distribution on fine grid units. We further examine the distribution of nine main spatial risk factors, including agencies, hospitals, park squares, sports fields, banks, hotels, Etc., which are tested for the significant positive correlation with the heat distribution of the epidemic. The weights of the spatial risk factors are used for training Generative Adversarial Network models, which predict the heat distribution of the outbreak in a given area. According to the trained model, optimizing the relevant environment design in urban areas to control risk factors effectively prevents and manages the epidemic from dispersing. The input image of the machine learning model is a city plan converted by public infrastructures, and the output image is a map of urban spatial risk factors in the given area.
series cdrf
email
last changed 2024/05/29 14:02

_id caadria2020_015
id caadria2020_015
authors Zheng, Hao, An, Keyao, Wei, Jingxuan and Ren, Yue
year 2020
title Apartment Floor Plans Generation via Generative Adversarial Networks
doi https://doi.org/10.52842/conf.caadria.2020.2.599
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 599-608
summary When drawing architectural plans, designers should always define every detail, so the images can contain enough information to support design. This process usually costs much time in the early design stage when the design boundary has not been finally determined. Thus the designers spend a lot of time working forward and backward drawing sketches for different site conditions. Meanwhile, Machine Learning, as a decision-making tool, has been widely used in many fields. Generative Adversarial Network (GAN) is a model frame in machine learning, specially designed to learn and generate image data. Therefore, this research aims to apply GAN in creating architectural plan drawings, helping designers automatically generate the predicted details of apartment floor plans with given boundaries. Through the machine learning of image pairs that show the boundary and the details of plan drawings, the learning program will build a model to learn the connections between two given images, and then the evaluation program will generate architectural drawings according to the inputted boundary images. This automatic design tool can help release the heavy load of architects in the early design stage, quickly providing a preview of design solutions for architectural plans.
keywords Machine Learning; Artificial Intelligence; Architectural Design; Interior Design
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2020_446
id caadria2020_446
authors Cho, Dahngyu, Kim, Jinsung, Shin, Eunseo, Choi, Jungsik and Lee, Jin-Kook
year 2020
title Recognizing Architectural Objects in Floor-plan Drawings Using Deep-learning Style-transfer Algorithms
doi https://doi.org/10.52842/conf.caadria.2020.2.717
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 717-725
summary This paper describes an approach of recognizing floor plans by assorting essential objects of the plan using deep-learning based style transfer algorithms. Previously, the recognition of floor plans in the design and remodeling phase was labor-intensive, requiring expert-dependent and manual interpretation. For a computer to take in the imaged architectural plan information, the symbols in the plan must be understood. However, the computer has difficulty in extracting information directly from the preexisting plans due to the different conditions of the plans. The goal is to change the preexisting plans to an integrated format to improve the readability by transferring their style into a comprehensible way using Conditional Generative Adversarial Networks (cGAN). About 100-floor plans were used for the dataset which was previously constructed by the Ministry of Land, Infrastructure, and Transport of Korea. The proposed approach has such two steps: (1) to define the important objects contained in the floor plan which needs to be extracted and (2) to use the defined objects as training input data for the cGAN style transfer model. In this paper, wall, door, and window objects were selected as the target for extraction. The preexisting floor plans would be segmented into each part, altered into a consistent format which would then contribute to automatically extracting information for further utilization.
keywords Architectural objects; floor plan recognition; deep-learning; style-transfer
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2020_432
id ecaade2020_432
authors Fragkia, Vasiliki and Worre Foged, Isak
year 2020
title Methods for the Prediction and Specification of Functionally Graded Multi-Grain Responsive Timber Composites
doi https://doi.org/10.52842/conf.ecaade.2020.2.585
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 585-594
summary The paper presents design-integrated methods for high-resolution specification and prediction of functionally graded wood-based thermal responsive composites, using machine learning. The objective is the development of new circular design workflow, employing robotic fabrication, in order to predict fabrication files linked to material performance and design requirements, focused on application for intrinsic responsive and adaptive architectural surfaces. Through an experimental case study, the paper explores how machine learning can form a predictive design framework where low-resolution data can solve material systems at high resolution. The experimental computational and prototyping studies show that the presented image-based machine learning method can be adopted and adapted across various stages and scales of architectural design and fabrication. This in turn allows for a design-per-requirement approach that optimizes material distribution and promotes material economy.
keywords material specification; responsive timber composites; machine learning; robotic fabrication; building envelopes
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2020_131
id ecaade2020_131
authors Gortazar-Balerdi, Ander and Markusiewicz, Jacek
year 2020
title Legible Bilbao - Computational method for urban legibility
doi https://doi.org/10.52842/conf.ecaade.2020.1.209
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 209-218
summary Legibility is a core concept in spatial cognition theories since Kevin Lynch published The Image of the City in 1960. It is the ability of a city to be interpreted and easily used, travelled and enjoyed, from the pedestrian's perspective. Following a proposal in the participatory budget process of the city of Bilbao, we wrote a technical report to improve the urban legibility of the city and facilitate wayfinding through innovations in signage. This paper aims to present this project, which is an application of computational methods to measure urban legibility that resulted in a proposal for a new wayfinding strategy for Bilbao. The method is based on GIS data, and it simulates urban processes using dedicated algorithms, allowing us to perform two analyses that resulted in two overlapping maps: a heat map of decision points and a map of visual openings. It allowed us to perceive common urban elements that can help to decide both the location of the wayfinding signage and how it should provide the relevant information. In addition, the research introduces the concept of anticipation points, as a complement to the existing idea of decision points.
keywords Wayfinding; Urban legibility; Spatial cognition
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia20_658
id acadia20_658
authors Ho, Brian
year 2020
title Making a New City Image
doi https://doi.org/10.52842/conf.acadia.2020.1.658
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 658-667.
summary This paper explores the application of computer vision and machine learning to streetlevel imagery of cities, reevaluating past theory linking urban form to human perception. This paper further proposes a new method for design based on the resulting model, where a designer can identify areas of a city tied to certain perceptual qualities and generate speculative street scenes optimized for their predicted saliency on labels of human experience. This work extends Kevin Lynch’s Image of the City with deep learning: training an image classification model to recognize Lynch’s five elements of the city image, using Lynch’s original photographs and diagrams of Boston to construct labeled training data alongside new imagery of the same locations. This new city image revitalizes past attempts to quantify the human perception of urban form and improve urban design. A designer can search and map the data set to understand spatial opportunities and predict the quality of imagined designs through a dynamic process of collage, model inference, and adaptation. Within a larger practice of design, this work suggests that the curation of archival records, computer science techniques, and theoretical principles of urbanism might be integrated into a single craft. With a new city image, designers might “see” at the scale of the city, as well as focus on the texture, color, and details of urban life.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_222
id ecaade2020_222
authors Ikeno, Kazunosuke, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Automatic Generation of Horizontal Building Mask Images by Using a 3D Model with Aerial Photographs for Deep Learning
doi https://doi.org/10.52842/conf.ecaade.2020.2.271
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 271-278
summary Information extracted from aerial photographs is widely used in urban planning and design. An effective method for detecting buildings in aerial photographs is to use deep learning for understanding the current state of a target region. However, the building mask images used to train the deep learning model are manually generated in many cases. To solve this challenge, a method has been proposed for automatically generating mask images by using virtual reality 3D models for deep learning. Because normal virtual models do not have the realism of a photograph, it is difficult to obtain highly accurate detection results in the real world even if the images are used for deep learning training. Therefore, the objective of this research is to propose a method for automatically generating building mask images by using 3D models with textured aerial photographs for deep learning. The model trained on datasets generated by the proposed method could detect buildings in aerial photographs with an accuracy of IoU = 0.622. Work left for the future includes changing the size and type of mask images, training the model, and evaluating the accuracy of the trained model.
keywords Urban planning and design; Deep learning; Semantic segmentation; Mask image; Training data; Automatic design
series eCAADe
email
last changed 2022/06/07 07:50

_id cdrf2019_93
id cdrf2019_93
authors Jiaxin Zhang , Tomohiro Fukuda , and Nobuyoshi Yabuki
year 2020
title A Large-Scale Measurement and Quantitative Analysis Method of Façade Color in the Urban Street Using Deep Learning
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_9
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary Color planning has become a significant issue in urban development, and an overall cognition of the urban color identities will help to design a better urban environment. However, the previous measurement and analysis methods for the facade color in the urban street are limited to manual collection, which is challenging to carry out on a city scale. Recent emerging dataset street view image and deep learning have revealed the possibility to overcome the previous limits, thus bringing forward a research paradigm shift. In the experimental part, we disassemble the goal into three steps: firstly, capturing the street view images with coordinate information through the API provided by the street view service; then extracting facade images and cleaning up invalid data by using the deep-learning segmentation method; finally, calculating the dominant color based on the data on the Munsell Color System. Results can show whether the color status satisfies the requirements of its urban plan for façade color in the street. This method can help to realize the refined measurement of façade color using open source data, and has good universality in practice.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_260
id caadria2020_260
authors LI, Yan, DU, Hongwu and WANG, Qing
year 2020
title The Association Study Between Residential Building Interface and Perceived Density based on VR Technology - Taking 2 Enclosed Residential Districts of Guangzhou as Examples
doi https://doi.org/10.52842/conf.caadria.2020.1.711
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 711-720
summary As urban development enters the stock increment era , the demand of environmental quality in urban residential districts gradually improves, making the construction of livable residential environment an important direction of urban development. The improvement of livable environment is the inevitable result of this process and perceived density is an indispensable and important part. Among the statistical methods, preference study is the most commonly one to explore the subjective factors affecting preference. The experience of immersive virtual environment can provide a more appropriate analytical method better for traditional image selection. Different permeability of architectural interface has significant influences on the perception of space comfortability, crowding and fascination. In this paper, two existing enclosed residential districts are selected for case study. The factors closely related to perceived density, such as solid Wall, grille, glass, open space, greening, etc, are selected by using immersive virtual technology. Through the interviewees' evaluations of perceived density of the virtual environment, the relationship between building interface and the perceived density of the residential area will be established.
keywords Spatial Perceived Density; Virtual Reality Technology; Enclosed Residential District; Housing Interface; Association Study
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia20_178
id acadia20_178
authors Meeran, Ahmed; Conrad Joyce, Sam
year 2020
title Machine Learning for Comparative Urban Planning at Scale: An Aviation Case Study
doi https://doi.org/10.52842/conf.acadia.2020.1.178
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 178-187.
summary Aviation is in flux, experiencing 5.4% yearly growth over the last two decades. However, with COVID-19 aviation was hard hit. This, along with its contribution to global warming, has led to louder calls to limit its use. This situation emphasizes how urban planners and technologists could contribute to understanding and responding to this change. This paper explores a novel workflow of performing image-based machine learning (ML) on satellite images of over 1,000 world airports that were algorithmically collated using European Space Agency Sentinel2 API. From these, the top 350 United States airports were analyzed with land use parameters extracted around the airport using computer vision, which were mapped against their passenger footfall numbers. The results demonstrate a scalable approach to identify how easy and beneficial it would be for certain airports to expand or contract and how this would impact the surrounding urban environment in terms of pollution and congestion. The generic nature of this workflow makes it possible to potentially extend this method to any large infrastructure and compare and analyze specific features across a large number of images while being able to understand the same feature through time. This is critical in answering key typology-based urban design challenges at a higher level and without needing to perform on-ground studies, which could be expensive and time-consuming.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_411
id ecaade2020_411
authors Muehlbauer, Manuel, Song, Andy and Burry, Jane
year 2020
title Smart Structures - A Generative Design Framework for Aesthetic Guidance in Structural Node Design - Application of Typogenetic Design for Custom-Optimisation of Structural Nodes
doi https://doi.org/10.52842/conf.ecaade.2020.1.623
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-632
summary Virtual prototypes enable performance simulation for building components. The presented research extended the application of generative design using virtual prototypes for interactive optimisation of structural nodes. User-interactivity contributed to the geometric definition of design spaces rather than the final geometric outcome, enabling another stage of generative design for the micro-structure of the structural node. In this stage, the micro-structure inside the design space was generated using fixed topology. In contrast to common optimisation strategies, which converge towards a single optimal outcome, the presented design exploration process allowed the regular review of design solutions. User-based selection guided the evolutionary process of design space exploration applying Online Classification. Another guidance mechanism called Shape Comparison introduced an intelligent control system using an inital image input as design reference. In this way, aesthetic guidance enabled the combined evaluation of quantitative and qualitative criteria in the custom-optimisation of structural nodes. Interactive node design extended the potential for shape variation of custom-optimized structural nodes by addressing the geometric definition of design spaces for multi-scalar structural optimisation.
keywords generative design; evolutionary computation; interactive machine learning; typogenetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2020_389
id ecaade2020_389
authors Nunes Locatelli, Daniel, Prazeres Veloso de Souza, Leonardo, Giantini, Guilherme, Curti, Vitor and Joly Requena, Carlos Augusto
year 2020
title Life Lamp - Connecting Design and People Through Emotion
doi https://doi.org/10.52842/conf.ecaade.2020.2.041
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 41-50
summary Nowadays it is possible to use technology to achieve emotion-oriented products related to the user experience. The aim of this paper is to address a design exploration that combines the use of algorithmic modeling in order to create a design that seeks to express meaning through emotional bonds with people. Life Lamp was created to represent a life cycle as a sensitive object consisting of three layers and a unique shade that produces a complex image, expressing the paths and surprises of our existence. The design process is a hybrid between top-down and bottom-up approaches. The designers worked both with a predefined heart-like 3D model as the design base and with agent-based modeling, widely explored by Craig Reynolds in the 1980s. Life lamp is a product that emerged as a result of Estudio Guto Requena's research that investigates the impact of digital culture through design by seeking to merge technology and affection.
keywords 3D Print Design; Agent-based System; Algorithmic Modeling; Emotional Design ; Digital Design; Mass Customization
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2020_259
id caadria2020_259
authors Rhee, Jinmo, Veloso, Pedro and Krishnamurti, Ramesh
year 2020
title Integrating building footprint prediction and building massing - an experiment in Pittsburgh
doi https://doi.org/10.52842/conf.caadria.2020.2.669
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 669-678
summary We present a novel method for generating building geometry using deep learning techniques based on contextual geometry in urban context and explore its potential to support building massing. For contextual geometry, we opted to investigate the building footprint, a main interface between urban and architectural forms. For training, we collected GIS data of building footprints and geometries of parcels from Pittsburgh and created a large dataset of Diagrammatic Image Dataset (DID). We employed a modified version of a VGG neural network to model the relationship between (c) a diagrammatic image of a building parcel and context without the footprint, and (q) a quadrilateral representing the original footprint. The option for simple geometrical output enables direct integration with custom design workflows because it obviates image processing and increases training speed. After training the neural network with a curated dataset, we explore a generative workflow for building massing that integrates contextual and programmatic data. As trained model can suggest a contextual boundary for a new site, we used Massigner (Rhee and Chung 2019) to recommend massing alternatives based on the subtraction of voids inside the contextual boundary that satisfy design constraints and programmatic requirements. This new method suggests the potential that learning-based method can be an alternative of rule-based design methods to grasp the complex relationships between design elements.
keywords Deep Learning; Prediction; Building Footprint; Massing; Generative Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia20_160p
id acadia20_160p
authors Scelsa, Jonathan A.; Birkeland, Jennifer
year 2020
title The Collective Perspective Machine
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 160-163
summary Since the age of humanism, both on the easel and our screens, the production of the architectural image has been conventionally governed by one individual, whom we might refer to as the drafter. As the primary author sitting in the chair of the vantage point, the drafter occupies the privileged position, for whom the translation between the second and third dimensions establishes an approximate realism. The viewers, or secondary participants, by contrast, are relegated to a subordinate position, subject to the residual distortions of the drafter’s vision, based on their relative vantage points. While perhaps cynical, our current condition does not share the same philosophical positivistic optimism of the Renaissance, nor the ideal faith in humanity that empowered the democratic universalisms of modernity. Rather, it is formed from an ambiguous inquiry into creating a new sense of truth, brought forth by the proliferation and amplification of multiple individual ‘perspectives.’ In his conclusion to The Projective Cast, Evans illustrates ten ‘transitive spaces’ of geometric projection towards the generation and representation of a designed object. The fifth “transitive space” describes the space between a building or object and its defined perspectival representations. Evans observes that this path typically follows the progression from the object to a photo or a drawing and is rarely reversed. This project and machine designed for an exhibition seeks to establish a new procedure for generating design, neither subjectively from a personal static individual point nor objectively in the round for all to experience equally. Instead, a new machine establishes form as the hybrid of multiple responsive perspectives wherein all viewers are simultaneously the generator of projective form and the receiver of distorted images.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2020_222
id caadria2020_222
authors Sun, Chengyu and Hu, Wei
year 2020
title A Rapid Building Density Survey Method Based on Improved Unet
doi https://doi.org/10.52842/conf.caadria.2020.2.649
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 649-658
summary How to rapidly obtain building density information in a large range is a key problem for architecture and planning. This is because architectural design or urban planning is not isolated, and the environment of the building is influenced by the distribution of other buildings in a larger area. For areas where building density data are not readily available, the current methods to estimate building density are more or less inadequate. For example, the manual survey method is relatively slow and expensive, the traditional satellite image processing method is not very accurate or needs to purchase high-precision multispectral remote sensing image from satellite companies. Based on the deep neural network, this paper proposes a method to quickly extract large-scale building density information by using open satellite images platforms such as Baidu map, Google Earth, etc., and optimizes the application in the field of building and planning. Compared with the traditional method, it has the advantages of less time and money, higher precision, and can provide data support for architectural design and regional planning rapidly and conveniently.
keywords building density; rapidly and conveniently; neural network
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_567381 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002