CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id sigradi2020_60
id sigradi2020_60
authors Asmar, Karen El; Sareen, Harpreet
year 2020
title Machinic Interpolations: A GAN Pipeline for Integrating Lateral Thinking in Computational Tools of Architecture
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 60-66
summary In this paper, we discuss a new tool pipeline that aims to re-integrate lateral thinking strategies in computational tools of architecture. We present a 4-step AI-driven pipeline, based on Generative Adversarial Networks (GANs), that draws from the ability to access the latent space of a machine and use this space as a digital design environment. We demonstrate examples of navigating in this space using vector arithmetic and interpolations as a method to generate a series of images that are then translated to 3D voxel structures. Through a gallery of forms, we show how this series of techniques could result in unexpected spaces and outputs beyond what could be produced by human capability alone.
keywords Latent space, GANs, Lateral thinking, Computational tools, Artificial intelligence
series SIGraDi
email
last changed 2021/07/16 11:48

_id caadria2020_412
id caadria2020_412
authors Capunaman, Ozguc Bertug
year 2020
title CAM as a Tool for Creative Expression - Informing Digital Fabrication through Human Interaction
doi https://doi.org/10.52842/conf.caadria.2020.1.243
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 243-252
summary Contemporary digital design and fabrication tools often present deterministic and pre-programmed workflows. This limits the potential for developing a deeper understanding of materials within the process. This paper presents an interactive and adaptive design-fabrication workflow where the user can actively take turns in the fabrication process. The proposed experimental setup utilizes paste extrusion additive manufacturing in tandem with real-time control of an industrial robotic arm. By incorporating a computer-vision based feedback loop, it captures momentary changes in the fabricated artifact introduced by the users to inform the digital representation. Using the updated digital representation, the proposed system can offer simple design hypotheses for the user to evaluate and adapt future toolpaths accordingly. This paper presents the development of the experimental setup and delineates critical concepts and their motivation.
keywords Computer-Aided Design (CAD) and Manufacturing (CAM); Human Computer Interaction; 3D Printing; Interactive Digital Fabrication; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia20_464
id acadia20_464
authors Elberfeld, Nathaniel; Tessmer, Lavender; Waller, Alexandra
year 2020
title A Case for Lace
doi https://doi.org/10.52842/conf.acadia.2020.1.464
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 464-473.
summary Textiles and architecture share a long, intertwined history from the earliest enclosures to contemporary high-tech tensile structures. In the Four Elements of Architecture, Gottfried Semper (2010) posited wickerwork and carpet enclosures to be the essential origins of architectural space. More recently, architectural designers are capitalizing on the characteristics of textiles that are difficult or impossible to reproduce with other material systems: textiles are pliable, scalable, and materially efficient. As industrial knitting machines join robotic systems in architecture schools with fabrication- forward agendas, much of the recent developments in textile-based projects make use of knitting. In this paper, we propose an alternative textile technique, lacemaking, for architectural fabrication. We present a method for translating traditional lacemaking techniques to an architectural scale and explore its relative advantages over other textiles. In particular, we introduce bobbin lace and describe its steps both in traditional production and at an architectural scale. We use the unique properties of bobbin lace to form workflows for fabrication and computational analysis. An example of computational analysis demonstrates the ability to optimize lace-based designs towards particular labor objectives. We discuss opportunities for automation and consider the broader implications of understanding a material system relative to the cost of labor to produce designs using it.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_886
id sigradi2020_886
authors Lima, Elton Cristovao da Silva; Matsunaga, Cristina; Mendes, Leticia Teixeira
year 2020
title Sartorius Pavilion – Biomimicry as a design methodology for a parametric pavilion for the Serpentine Gallery/England
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 886-893
summary In order to design an ephemeral pavilion located at the Serpentine Gallery (England), an experimental design approach was developed in this paper by using biomimicry strategies associated with parametric modeling. Exploring the solution-based methodology, the analysis of the sartorius muscle anatomic features such as rotation, flexion and long shape allowed inspiring the proposal of a Sartorius Pavilion which is the object of study. The experiment was implemented throughout a parametric visual script tool resulting in a model capable of rapidly and intuitively simulating shape variations, basic structural and material attributes by modifying a set of previously defined parameters.
keywords Biomimicry, Bio-inspired Architecture, Sartorius Muscle, Parametric Pavilion, Serpentine Gallery
series SIGraDi
email
last changed 2021/07/16 11:53

_id ijac202018204
id ijac202018204
authors Nathansohn, Nof; Molly Mason, David Allen White, Hugh Timothy Ebdy, Yaara Yacoby, Hila Sharabi, and Lawrence Sass
year 2020
title Design for disassembly: Using temporary fabrication for land politics in the Negev
source International Journal of Architectural Computing vol. 18 - no. 2, 155-173
summary Political conflicts have increasingly displaced people from their homes, necessitating various forms of temporary structures and housing. However, these shelters are often one-size-fits-all and do not take into account the individual requirements, family structures, or cultural needs of these communities. This article explores how digital fabrication can be used to empower disenfranchised communities to act as their own architects. Because the police demolish the structures in Al Araqib every 3 weeks, the residents have to rebuild their structures, and appropriate architecture as a resistance tool, and not only as a housing solution. This circumstance allows us to develop a structure designed primarily for the condition of rapid disassembly that can additionally be produced with a low-tech setup of a mobile computer numerical control router. Through this case study with the Bedouin village Al Araqib in the Negev Desert, we introduce the term community-specific design, present our methodology for designing and fabricating a temporary structure in collaboration with the community, and outline the logistics for a future mobile infrastructure. Beyond aiding the Bedouin’s fight for justice, our intention as designers, acutely aware of the power of technology and architecture, is to harness both physical and digital tools in an effort to create innovative systems that can be leveraged by unrecognized populations struggling for cultural survival.
keywords Digital fabrication, temporary structur
series journal
email
last changed 2020/11/02 13:34

_id acadia20_372
id acadia20_372
authors Nelson, Cameron; Sabin, Jenny
year 2020
title Shape-Programmed Self-Assembly of Bead Structures
doi https://doi.org/10.52842/conf.acadia.2020.1.372
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 372-381.
summary This paper demonstrates the potential of a robust, low-cost approach to programmable matter using beads and string to achieve complex shapes with novel self-organizing and deformational properties. The method is inspired by the observation that beads forced together along a string will become constrained until they spontaneously rigidify. This behavior is easily observed using any household string and flat-faced beads and recalls the mechanism behind classic crafts such as push puppets. However, specific examples of architectural applications are lacking. We analyze how this phenomenon occurs through static force analyses, physical tests, and simulation, using a rigid body physics engine to validate digital prototypes. We develop a method of designing custom bead geometries able to be produced via generic 3D-printing technology, as well as a computational path-planning toolkit for designing ways of threading beads together. We demonstrate how these custom bead geometries and threading paths influence the acquired structure and its assembly. Finally, we propose a means of scaling up this phenomenon, suggesting potential applications in deployable architecture, mortarless assembly of nonfunicular masonry, and responsive architectural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_290
id acadia20_290
authors Stuart-Smith, Robert; Danahy, Patrick; Revelo La Rotta, Natalia
year 2020
title Topological and Material Formation
doi https://doi.org/10.52842/conf.acadia.2020.1.290
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 290-299.
summary Extrusion-based additive manufacturing (AM) is gaining traction in the construction industry, offering lower environmental and economic costs through reductions in material and production time. AM designs achieve these reductions by increasing topological and geometric complexity, and through variable material distribution via custom-programmed robot tool paths. Limited approaches are available to develop AM building designs within a topologically free design search or to leverage material affects relative to structural performance. Established methods such as topological structural optimization (TSO) operate primarily within design rationalization, demonstrating less formal or aesthetic diversity than agent-based methods that exhibit behavioral character. While material-extrusion gravitational affects have been explored in AM research using viscous materials such as concrete and ceramics, established methods are not sufficiently integrated into simulation and structural analysis workflows. A novel three-part method is proposed for the design and simulation of extrusion-based AM that includes topoForm, an evolutionary multi-agent software capable of generating diverse topological designs; matForm, an agent-based AM robot tool-path generator that is geometrically agnostic and adapts material effects to local structural and geometric data; and matSim, a material-physics simulation environment that enables high-resolution AM material effects to be simulated and structurally and aesthetically analyzed. The research enables designers to incorporate and simulate material behavior prior to fabrication and produce instructions suitable for industrial robot AM. The approach is demonstrated in the generative design of four AM column-like elements.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_334
id ecaade2020_334
authors Ntzoufras, Sotirios, Oungrinis, Konstantinos-Alketas, Liapi, Marianthi and Papamanolis, Antonios
year 2020
title Robotic Swarms in Architectural Design - A communication platform bridging design analysis and robotic construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.453
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 453-462
summary The research work fueling this paper examines ?ptimal approaches for bridging design analysis and robotic spatial construction. In this context, the paper presents the development of a unified platform for managing a swarm of robotic fabrication agents. The goal is the development of a streamlined methodology that guides the conversion of a design model into construction data code that can be assigned to the robotic swarm for fabrication.The work focuses on bridging architectural design platforms and distributed automation processes, on the one hand, and on the other, it targets the development of a functional management tool for adjusting and optimizing fabrication. A crucial parameter considered is the monitoring and assessment of all stages of the proposed process. This involves a constant exchange of information between the various actors, such as the swarm agents, the construction data and the designer - user. As a result, the construction process is treated as a constant reassessment and re-adjustment of the design parameters rather than the linear result of the original set of construction data. Therefore, the proposed system cannot be described as reactive, but acts responsively in a ``sensible'' manner.
keywords Swarm Robotics; Adaptive Fabrication; Robotic Construction Communication Platform; Sensible System
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2020_133
id ecaade2020_133
authors Andrade Zandavali, Barbara, Paul Anderson, Joshua and Patel, Chetan
year 2020
title Embodied Learning through Fabrication Aware Design
doi https://doi.org/10.52842/conf.ecaade.2020.2.145
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 145-154
summary The contemporary culture of geometry-driven design stands as consequence of an institutionalised segregation between the fields of architecture, structure and construction. In turn, digital design methods that are both material and fabrication aware from the outset create space for uncertainty and the potential for embodied learning. Following this principle, this paper summarises the outcomes of a workshop developed to investigate the contribution of fabrication aware design methods in the production of a masonry block using both analogue and digital manufacturing. Students were to develop and investigate a design, through assembly techniques and configurations orientated around manual hot wire cutting, robotic tooling and three-dimensional printing. Outcomes were manufactured and compared regarding work precision, production time, material efficiency, cost and scalability. The analysis indicated that the most accurate results yielded from the robotic tooling system, and simultaneously exhibited the most efficient use of time, while the three-dimensional printer generated the least material waste, due to the nature of additive production. Fabrication aware design and comparative analysis enabled students to make more informed decisions while the use of rapid prototyping facilitated a relationship between digitalization and materiality allowing for a space in which uncertainty and reflection could be fostered. Reinforcing that fabrication aware design methods can unify the field and provide guidance to designers over multi-lateral aspects of a project.
keywords Fabrication-Aware Design; Rapid Prototyping; Embodiment
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_260
id sigradi2020_260
authors Bhattacharya, Maharshi; Jung, Francisco
year 2020
title Multi-Mission Space Exploration Vehicle (MMSEV) Nosecone Design Optimization
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 260-266
summary This paper addresses ergonomic drawbacks in NASA’s modular Multi-Mission Space Exploration Vehicle’s (MMSEV) latest prototype, 2B’s nosecone, to propose new iteration based on considerations such as mass minimization, visibility maximization, and structural integrity. With 2B as a benchmark, and using computational tools typically used in the AEC industry to carry out FEA analysis, comparisons are made with potential design changes. The numerical and visual data such as weight, and stress distribution, provided by the benchmark analysis, served as metrics for comparison and redesign. In turn, this design development exercise attempts to bring together the different design approaches to design, held by human- factors designers and structural engineers.
keywords Form, Optimization, Finite Element Analysis, Space-Exploration Vehicle, Stress-Analysis
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_226p
id acadia20_226p
authors Borhani, Alireza; Kalantar, Negar
year 2020
title Interlocking Shell
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 226-231
summary With a specific focus on robotic stereotomy, two full-scale vault structures were designed to explore the potential of self-standing building structures made from interlocking components; these structures were fabricated with a track-mounted industrial-scale robot (ABB 4600). To respond to the economic affordances of robotic subtractive cutting, all uniquely shaped structural modules came from one block of material (48"" x96"" x36""). Through the discretization of curvilinear tessellated vault surfaces into a limited number of uniquely shaped modules with embedded form-fitting connectors, the project exhibited the potential for programming a robot to cut ruled surfaces to produce freeform shells of any kind. Representing nearly zero-waste construction, the developed technology can potentially be used for self-supporting emergency shelters and field medical clinics, facilitating easy shipping and speedy assembly. Without using any scaffolding, a few people can erect and dismantle an entire mortar-free structure at the construction site. The disassembled structure occupies minimal space in storage, and the structure’s pieces can be transported to the site in stacks. Robot milling is a common technique for removing material to transform a block into a sculptural shape. Unlike milling techniques that produce significant waste, we used a hotwire that sliced through a Geofoam block to create almost no waste pieces. Since the front side of every module was concurrent with the backside of the next one, such a decision allowed to operate just one cut per front side of each module. In this case, by having three cuts, two neighboring modules were fabricated. The form of the structure and its modules emerged from the constraints of the fabrication technique, aiming to establish a feedback loop between geometry, material, simulation, and tool. By cross-referencing geometric data across Grasshopper, a customized tessellation script was made to breakdown a vault into its modular ruled surface constructs.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_180
id sigradi2020_180
authors Cavalcanti, Isabella Eloy; Mendes, Leticia Teixeira
year 2020
title Form and urban life in Christopher Alexander's work: translation of patterns for parametric code
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 180-187
summary Computational design, specifically parametric modeling, has played important role in reaching complex forms, optimizations and automations of design processes. In addition to using parametric technology as a tool to generate form, this article aims to discuss the potential of parametric design as a connection between theory and design activity, both in practice and in the teaching activity. To illustrate that, this paper will present results of a bigger research that used the work of the architect Christopher Alexander as a basis for the development of decision-making instruments that deal with the complexity between form and urban life.
keywords Urban design, Parametric modeling, Computational design, Christopher Alexander
series SIGraDi
email
last changed 2021/07/16 11:48

_id ecaade2020_214
id ecaade2020_214
authors Chen, Hsien and Hsu, Pei-Hsien
year 2020
title Data Mining as a User-oriented Tool in Participatory Urban Design
doi https://doi.org/10.52842/conf.ecaade.2020.1.011
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 11-18
summary In this research, we did the datamining to the POI(point-of-interest) of the city, and shows how Popular times data and NPL(Natural language processing) analysis transformed user data into new tools of participatory design of urban planning. After analyzing and visualizing the popular time data of the city POI, we showed the city users' preferred place to go at different point in time. And this will figured out that at some time, same type of POI has different using condition. Based on above mentioned, we used NPL to analyze user reviews to find out the causes and provide planning suggestions. This method can offer planner a chance to understand the experience of city user at the planning stage. Comparing to the traditional method, fetching data from the social platform could be able to get the daily preference, perspective and emotion of the users, and these data can make the result of participatory urban planning accord with the demand of the users.
keywords Popular times; NLP; Social Media; Urban Design Tool; Smart Cities
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2020_082
id caadria2020_082
authors Cheng, Celine and Pelosi, Antony
year 2020
title Connecting Timber Sheet Materials to Create a Self-Supporting Structure using Robotic Fabrication and Computational Tools
doi https://doi.org/10.52842/conf.caadria.2020.1.085
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 85-94
summary The research developed in this paper is the workflow to create a self-supporting structure from sheet materials using robotic fabrication and computational tools. This research focuses on timber sheet materials, as timber is a material that can be altered in a variety of ways. Japanese timber connections were a strong influence for this research, due to its prolonged lifespan and sustainable advantages. In the past, timber fabrication techniques have been limited due to design limitations. This research explored how current technology, specifically parametric software combined with robotic fabrication, can create timber connections to connect sheet materials at different angles. This method was utilised to repurpose the concept of sheet materials towards a complex structure, which adopted the idea of mass customisation over mass production. This can help reshape the future of architecture through the use of advancing technology and sustainable assembly techniques using timber to timber joints.
keywords Architecture; Robotic Fabrication; Timber; Parametric Design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_118
id caadria2020_118
authors Chow, Ka Lok and van Ameijde, Jeroen
year 2020
title Generative Housing Communities - Design of Participatory Spaces in Public Housing Using Network Configurational Theories
doi https://doi.org/10.52842/conf.caadria.2020.2.283
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 283-292
summary This research-by-design project explores how public housing estates can accommodate social diversity and the appropriation of shared spaces, using qualitative and quantitative analysis of circulation networks. A case study housing estate in Hong Kong was analysed through field observations of movements and activities and as a site for the speculative re-design of shared spaces. Generative design processes were developed based on several parameters, including shortest paths, visibility integration and connectivity integration (Hillier & Hanson, 1984). Additional tools were developed to combine these techniques with optimisation of sunlight access, maximisation of views for residential towers and the provision of permeability of ground level building volumes. The project demonstrates how flexibility of use and social engagement can constitute a platform for self-organisation, similar to Jane Jacobs' notion of vibrant streets leading to active and progressive communities. It shows how computational design and configurational theories can promote a bottom-up approach for generating new types of residential environments that support participatory and diverse communities, rather than a conventional top-down approach that is perceived to embody mechanisms of social regimentation.
keywords Urban Planning and Design; Network Configuration; Community Space and Social Interaction; Hong Kong Public Housing
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2022_368
id ecaade2022_368
authors Das, Avishek, Brunsgaard, Camilla and Madsen, Claus Brondgaard
year 2022
title Understanding the AR-VR Based Architectural Design Workflow among Selected Danish Architecture Practices
doi https://doi.org/10.52842/conf.ecaade.2022.1.381
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 381–388
summary Virtual reality (VR) and augmented reality (AR) have been proposed to be additional architectural design mediums for at least 25 years (Dagit, 1993). Despite rapid technical and technological development, it has not been adopted into architectural design practices as compared to academia and research. Surveys from the American Institute of Architects (AIA) and Royal Institutes of British Architects (RIBA) demonstrate the state of architectural practices; 72% of architects and 65% of architects respectively are not using any kind of virtual, augmented, or mixed reality in their practices(RIBA and Microsoft, 2018; Hampson, 2020). In this paper, the authors investigate the state of practices, issues, challenges, and opportunities of the utilization of virtual, augmented, and mixed realities in six architectural practices in the Danish context. Three of the practices are large architectural practices, one medium-sized practice specializing in institutional, healthcare and cultural architecture, and one firm designing private family houses, kindergartens, daycares and places for people with disability and, one experimental design studio. All these practices have used VR/AR in their projects to various degrees. In recent years Danish architectural practices have been involved in various VR/AR-based exhibitions, demonstrations, and tool developments to promote the usage of the same in design practice. Through a set of qualitative interviews with personnel from key architectural practices, the authors would like to demonstrate the present state of practices. The investigation explores the usage of VR and AR in Danish architecture practices by identifying challenges and opportunities regarding skill levels, architectural typology, use cases, toolchains, and workflow and shows similarities and differences between traditional and VR-based design processes. The main findings show how VR/AR-based visualization helps architects to perceive spatiality and also ushers creativity through immersion and overlays.
keywords Virtual Reality, Augmented Reality, Architectural Design Practice, Denmark
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2020_190
id ecaade2020_190
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2020
title Smart Contracts for Decentralised Building Information Modelling
doi https://doi.org/10.52842/conf.ecaade.2020.2.565
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 565-574
summary The paper presents a model for decentralizing building information modelling, through implementing its infrastructure using the decentralized web. We discuss the shortcomings of BIM in terms of its infrastructure, with a focus on tracing identities of design authorship in this collective design tool. In parallel we examine the issues with BIM in the cloud and propose a decentralized infrastructure based on the Ethereum blockchain and the Interplanetary filesystem (IPFS). A series of computing nodes, that act as nodes on the Ethereum Blockchain, host disk storage with which they participate in a larger storage pool on the Interplanetary Filesystem. This storage is made available through an API is used by architects and designers creating and editing a building information model that resides on the IPFS decentralised storage. Through this infrastructure central servers are eliminated, and BIM libraries and models can be shared with others in an immutable and transparent manner. As such Architecture practices are able to exploit their intellectual property in novel ways, by making it public on the internet. The infrastructure also allows the decentralised creation of a resilient global pool of data that allows the participation of computation agents in the creation and simulation of BIM models.
keywords Blockchain; decentralisation; immutability; resilience; Building Information Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_290
id ecaade2020_290
authors Elesawy, Amr Alaaeldin, Signer, Mario, Seshadri, Bharath and Schlueter, Arno
year 2020
title Aerial Photogrammetry in Remote Locations - A workflow for using 3D point cloud data in building energy modeling
doi https://doi.org/10.52842/conf.ecaade.2020.1.723
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 723-732
summary Building energy modelling (BEM) results are highly affected by the surrounding environment, due to the impact of solar radiation on the site. Hence, modelling the context is a crucial step in the design process. This is challenging when access to the geometrical data of the built and natural environment is unavailable as in remote villages. The acquisition of accurate data through conventional surveying proves to be costly and time consuming, especially in areas with a steep and complex terrain. Photogrammetry using drone-captured aerial images has emerged as an innovative solution to facilitate surveying and modeling. Nevertheless, the workflow of translating the photogrammetry output from data points to surfaces readable by BEM tools proves to be tedious and unclear. This paper presents a streamlined and reproducible approach for constructing accurate building models from photogrammetric data points to use for architectural design and energy analysis in early design stage projects.
keywords Building Energy Modeling; Photogrammetry; 3D Point Clouds; Low-energy architecture; Multidisciplinary design; Education
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_944771 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002