CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 657

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_526
id acadia20_526
authors Bruce, Mackenzie; Clune, Gabrielle; Culligan, Ryan; Vansice, Kyle; Attraya, Rahul; McGee, Wes; Yan Ng, Tsz
year 2020
title FORM{less}
doi https://doi.org/10.52842/conf.acadia.2020.1.526
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 526-535
summary Form{less} focuses on the creation of complex thin-shell concrete forms using robotically thermoformed plastic molds. Typically, similar molds would be created using the vacuum forming process, producing direct replications of the pattern. Creating molds with this process is not only time- and material-intensive but also costly if customization is involved. Thin-shell concrete forms often require a labor-intensive process of manually finishing the open-face surface. The devised process of thermoforming two nested molds allows the concrete to be cast in between, with finished surfaces on both sides. Molds made with polyethylene terephthalate glycol (PETG) allow the formwork to be reused and recycled. The research and fabrication work include the development of heating elements and the creation of the robotic process for forming the PETG. The PETG is manipulated via a robotic arm, with a custom magnetic end effector. The integration of robotics not only enables precision for manufacturing but also allows for replicability with unrestricted threedimensional deformation. The repeatable process allows for rapid prototyping and geometric customization. Design options are then simulated computationally using SuperMatterTools, enabling further design exploration of this process without the need for extensive physical prototyping. This research aims to develop a process that allows for the creation of complex geometries while reducing the amount of material waste used for concrete casting. The novelty of the process created by dynamically forming PETG allows for quick production of formwork that is both customizable and replicable. This method of creating double-sided building components is simulated at various scales of implementation.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
doi https://doi.org/10.52842/conf.acadia.2020.1.516
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_427
id ecaade2020_427
authors Akçay Kavakoglu, Ayºegül
year 2020
title Beyond Material - Digital Tectonics of Fabric and Concrete
doi https://doi.org/10.52842/conf.ecaade.2020.1.089
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 89-96
summary Fabric formwork, known as the casting concrete with flexible fabric molds, frees the nature of the material, which is fluidity; hence, its tectonics. This paper examines the tectonics of concrete and fabric through computational design and analog methods. During this examination, fabrigami technique is used to foresee the intuitive act of concrete within the fabric mold concerning the computational model. Fabrigami use in fabric formwork allows the emergence of a dynamic fabric mold system revealing form variations.
keywords fabric formwork, fabrigami, folding, dynamic mold
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_300
id acadia20_300
authors H Arnardottir, Thora; Dade-Robertson, Martyn; Mitrani, Helen; Zhang, Meng; Christgen, Beate
year 2020
title Turbulent Casting
doi https://doi.org/10.52842/conf.acadia.2020.1.300
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 300-309.
summary There has been a growing interest in living materials and fabrication processes including the use of bacteria, algae, fungi, and yeast to offer sustainable alternatives to industrial materials synthesis. Microbially induced calcium carbonate precipitation (MICP) is a biomineralization process that has been widely researched to solve engineering problems such as concrete cracking and to strengthen soils. MICP can also be used as an alternative to cement in the fabrication of building materials and, because of the unique process of living fabrication, if we see bacteria as our design collaborators, new types of fabrication and processes may be possible. The process of biomineralization is inherently different from traditional fabrication processes that use casting or molding. Its properties are influenced by the active bacterial processes that are connected to the casting environment. Understanding and working with interrelated factors enables a novel casting approach and the exploration of a range of form types and materials of variable consistencies and structure. We report on an experiment with partial control of mineralization through the design of different experimental vessels to direct and influence the cementation process of sand. In order to capture the form of the calcification in these experiments, we have analyzed the results using three-dimensional imaging and a technique that excavates the most friable material from the cast in stages. The resulting scans are used to reconstruct the cementation timeline. This reveals a hidden fabrication/growth process. These experiments offer a different perspective on form finding in material fabrication.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_363
id caadria2020_363
authors Pal, Abhipsa, Chan, Wi Leen, Tan, Ying Yi, Chia, Pei Zhi and Tracy, Kenneth Joseph
year 2020
title Knit Concrete Formwork
doi https://doi.org/10.52842/conf.caadria.2020.1.213
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
summary The manufacture of concrete funicular shells often relies on traditional formwork construction techniques to provide a sculptured cavity for the fluid material to occupy (Bechthold, 2004). While this enables a predictable geometric outcome, the extensive use of timber and/or steel to construct these formworks account for up to 60% of the total production cost of concrete and are discarded after the casting is complete (Lloret et al. 2014). Thus, we propose an alternative method to create prefabricated modular systems out of concrete casted in customised tubular knitted membranes. These perform as a network of struts that can be affixed onto 3D printed nodes of a singular design. Altogether, these components serve as a kit-of-parts that can be transported to site and assembled together to create shell geometries.
keywords Knitted Textile; Fabric Formwork; Concrete Casting
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2020_377
id sigradi2020_377
authors Xu, Weishun; Huang, Zixun
year 2020
title Robotic Fabrication of Sustainable Hybrid Formwork with Clay and Foam for Concrete Casting
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 377-383
summary This paper presents a hybrid formwork fabrication method utilizing additive manufacturing with clay on top of curved foam surfaces robotically fabricated with hot wire. The primary focus of this study is to develop a relatively efficient and highly sustainable formwork manufacturing method capable of producing geometrically complex modular concrete building components. The method leverages fluidity and recyclability of clay to produce uniquely shaped, free-form parts of the mold, and reduces overall production time by using foam for shared mold support/enclosure. A Calibration and tool path generating method based on computational modeling to integrate the two systems are also subsequently developed.
keywords Robotic fabrication, Hybrid formwork, Mass customization, Clay printing, Foam cutting
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_546
id acadia20_546
authors Yan Ng, Tsz; Ahlquist, Sean; Filipov, Evgueni; Weisman, Tracey
year 2020
title Active-Casting
doi https://doi.org/10.52842/conf.acadia.2020.1.546
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 546-555.
summary Active-Casting explores the use of bespoke computer numerical controlled (CNC) manufactured knits to produce volumetric textile formwork for casting glass-fiber-reinforced concrete (GFRC). As a collaboration between experts in architecture, textile fabrication, and civil engineering, the research investigates multimaterial, functionally graded knit formwork as a fully seamless system to cast concrete. Working with controlled characteristics such as elasticity and stiffness of yarn type and knit structure, the soft textile is conceived as the vessel that defines the performative characteristics of volume, geometry, and surface detail. With only a minimal frame to suspend the volumetric cast, hydrostatic pressure “inflates” the fabric formwork, creating a dynamic form-finding process that eliminates the need for typical molding materials such as wood or foam. While active formfinding processes for CNC knit casting have been explored as an open-face, GFRC-sprayed system, the Active-Casting process produces a finished surface on all faces, embedded with expressions in form and surface detail from the knitted formwork. The precast units using this process reduce the amount of construction waste for formwork production, proposes a more automated fashion for manufacturing the formwork, and produces casts with complex geometries difficult to accomplish with traditional casting methods.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_254
id sigradi2020_254
authors Costa, Eduardo; Shepherd, Paul; Velasco, Rodrigo; Hudson, Roland
year 2020
title Automating Concrete Construction: Sustainable social housing in Colombia
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 254-259
summary The construction industry is a major source of carbon, and the main culprit is concrete. In addition, productivity for the construction sector is poor, and concrete construction in particular is labour intensive, slow, and costly. This paper introduces ongoing research addressing these two fundamental issues. First, by developing an integrated framework for automating manufacturing of reinforced concrete building elements through computation and robotic technology, and second by adapting such framework to the specific technical and socio- economic contexts of Colombian construction, specifically for social housing.
keywords Non-prismatic concrete elements, Reinforced concrete, Flexible formwork, Parametric modelling, Construction in Colombia
series SIGraDi
email
last changed 2021/07/16 11:48

_id ecaade2023_99
id ecaade2023_99
authors Dervishaj, Arlind, Fonsati, Arianna, Hernández Vargas, José and Gudmundsson, Kjartan
year 2023
title Modelling Precast Concrete for a Circular Economy in the Built Environment
doi https://doi.org/10.52842/conf.ecaade.2023.2.177
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 177–186
summary In recent years, there has been a growing interest in adopting circular approaches in the built environment, specifically reusing existing buildings or their components in new projects. To achieve this, drawings, laser scanning, photogrammetry and other techniques are used to capture data on buildings and their materials. Although previous studies have explored scan-to-BIM workflows, automation of 2D drawings to 3D models, and machine learning for identifying building components and materials, a significant gap remains in refining this data into the right level of information required for digital twins, to share information and for digital collaboration in designing for reuse. To address this gap, this paper proposes digital guidelines for reusing precast concrete based on the level of information need (LOIN) standard EN 17412-1:2020 and examines several CAD and BIM modelling strategies. These guidelines can be used to prepare digital templates that become digital twins of existing elements, develop information requirements for use cases, and facilitate data integration and sharing for a circular built environment.
keywords building information modelling (BIM), circular construction, reuse, concrete
series eCAADe
email
last changed 2023/12/10 10:49

_id sigradi2020_320
id sigradi2020_320
authors Hernández Ruiz, Christian Eugenia ; Espinoza Moreno, José Aurelio
year 2020
title POPULUS: DESIGN PROCESS, FROM PROTOTYPING TO THE OBJECT
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 320-325
summary Populus it´s a design proposal for concrete urban furniture, which is a new interpretation of popular design, helping to solve the shortage of functional equipment that is comfortable, durable and capable of being integrated into multiple contexts. This study reveals the importance of understanding the object before building it to user’s scale taking advantage of the tools provided by different methodologies such as rapid prototyping and digital manufacturing to explore material and functional aspects. In addition to validate the usefulness and adaptability of the creative process with the designer’s labor in an emerging context such as Latin America.
keywords Urban furniture, Design process, Popular design, Rapid prototyping, Digital manufacturing
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_172
id ecaade2020_172
authors Leder, Samuel, Weber, Ramon, Vasey, Lauren, Yablonina, Maria and Menges, Achim
year 2020
title Voxelcrete - Distributed voxelized adaptive formwork
doi https://doi.org/10.52842/conf.ecaade.2020.2.433
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 433-442
summary Advances in computational form finding and simulation enable the creation of highly efficient structurally aware freeform geometries. Using significantly less material than standardized building elements there are significant challenges in their materialization. We present Voxelcrete, a discrete, voxel-based, reconfigurable slip formwork system for the creation of non-standard concrete structures. We aim to transition from highly individualized and complex formworks tailored for individual structures to simple formworks that can be reused and reconfigured to realize a variety of designs. Voxelcrete is a robotically tended formwork system in which modular formwork units are iteratively arranged for continuous casts of concrete. The system allows for the production of large scale concrete objects using reconfigurable, adaptive formwork. This paper shows the conceptualization and development of the system and expands on the existing notion of adaptive formwork
keywords Reconfigurable Formwork; Concrete Construction; Robotic Fabrication; Voxels; Discrete Architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2020_409
id caadria2020_409
authors Naboni, Roberto and Paparella, Giulio
year 2020
title Circular Concrete Construction Through Additive FDM Formwork
doi https://doi.org/10.52842/conf.caadria.2020.1.233
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 233-242
summary One of the major downsides of concrete construction is the difficulty to be adapted, modified and deconstructed. In this work, we look at the potential enabled by the use of Additive Formwork based on Fused Deposition Modelling, in order to design and manufacture structural elements which can be assembled and disassembled easily. We call this new typology of structures Circular Concrete Construction. The paper illustrates an integrated computational workflow, which encompasses design and fabrication. Technological aspects of the 3D printed formwork and its application in reversible node and strut connections are described, with reference to the material and structural aspects, as well as prototyping experiments. The work is a proof of concept that opens perspectives for a new type of reversible concrete construction.
keywords Circular Concrete Construction; Additive Formwork; Additive Manufacturing; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2020_264
id ecaade2020_264
authors Nicholas, Paul, Rossi, Gabriella, Papadopoulou, Iliana, Tamke, Martin, Aalund Brandt, Nikolaj and Jessen Hansen, Leif
year 2020
title Precision Partner - Enhancing GFRC craftsmanship with industry 4.0 factory-floor feedback
doi https://doi.org/10.52842/conf.ecaade.2020.2.631
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 631-640
summary This paper presents a novel human-machine collaborative approach to automatic quality-control of Glass-Fiber Reinforced Concrete (GFRC) molds directly on the factory floor. The framework introduces Industry 4.0 technologies to enhance the ability of skilled craftsmen to make molds through the provision of horizontal feedback regarding dimensional tolerances. Where digital tools are seldom used in the fabrication of GFRC molds, and expert craftsmen are not digital experts, our implementation of automated registration and feedback processes enables craftsmen to be integrated into and gain value from the digital production chain. In this paper, we describe the in-progress framework, Precision Partner, which connects 3d scanning and point cloud registration of geometrically complex and varied one off elements to factory floor dimensional feedback. We firstly introduce the production context of GFRC molds, as well as industry standards for production feedback. We then detail our methods, and report the results of a case study that tests the framework on the case of a balcony element.
keywords 3d Scanning; GFRC; Feedback; Automation; Human in the loop; Digital Chain
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_446
id acadia20_446
authors Norell, Daniel; Rodhe, Einar; Hedlund, Karin
year 2020
title Completions
doi https://doi.org/10.52842/conf.acadia.2020.1.446
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 446-455.
summary Reuse of construction and demolition waste tends to be exceptional rather than systemic, despite the fact that such waste exists in excess. One of the challenges in handling used elements and materials is integrating them into a digital workflow through means of survey and representation. Techniques such as 3D scanning and robotic fabrication have been used to target irregular geometries of such extant material. Scanning can be applied to digitally define a unique rather than standard stock of materials or, as in the field of preservation, to transfer specific forms and qualities onto a new stock. This paper melds these two approaches through Completions, a project that promotes reuse by integrating salvaged elements and materials into new assemblies. Drawing from the ancient practice of reuse known as spolia, the work develops from the identification and documentation of a varied set of used entities that become points of departure for subsequent design and production of new entities. This involves multiple steps, from locating and selecting used elements to scanning and fabrication. Three assemblies based on salvaged objects are produced: a window frame, a door panel, and a mantelpiece. Different means of documentation are outlined in relation to specific qualities of these objects, from photogrammetry to image and mesh-based tracing. Authentic qualities belonging to these elements, such as wear and patina, are coupled with more ambiguous forms and materialities only attainable through digital survey and fabrication. Finally, Completions speculates on how more automated workflows might make it feasible to develop extensive virtual catalogs of used objects that designers could interact with remotely.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_218
id acadia20_218
authors Rossi, Gabriella; Nicholas, Paul
year 2020
title Encoded Images
doi https://doi.org/10.52842/conf.acadia.2020.1.218
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 218-227.
summary In this paper, we explore conditional generative adversarial networks (cGANs) as a new way of bridging the gap between design and analysis in contemporary architectural practice. By substituting analytical finite element analysis (FEA) modeling with cGAN predictions during the iterative design phase, we develop novel workflows that support iterative computational design and digital fabrication processes in new ways. This paper reports two case studies of increasing complexity that utilize cGANs for structural analysis. Central to both experiments is the representation of information within the data set the cGAN is trained on. We contribute a prototypical representational technique to encode multiple layers of geometric and performative description into false color images, which we then use to train a Pix2Pix neural network architecture on entirely digital generated data sets as a proxy for the performance of physically fabricated elements. The paper describes the representational workflow and reports the process and results of training and their integration into the design experiments. Last, we identify potentials and limits of this approach within the design processes.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_290
id acadia20_290
authors Stuart-Smith, Robert; Danahy, Patrick; Revelo La Rotta, Natalia
year 2020
title Topological and Material Formation
doi https://doi.org/10.52842/conf.acadia.2020.1.290
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 290-299.
summary Extrusion-based additive manufacturing (AM) is gaining traction in the construction industry, offering lower environmental and economic costs through reductions in material and production time. AM designs achieve these reductions by increasing topological and geometric complexity, and through variable material distribution via custom-programmed robot tool paths. Limited approaches are available to develop AM building designs within a topologically free design search or to leverage material affects relative to structural performance. Established methods such as topological structural optimization (TSO) operate primarily within design rationalization, demonstrating less formal or aesthetic diversity than agent-based methods that exhibit behavioral character. While material-extrusion gravitational affects have been explored in AM research using viscous materials such as concrete and ceramics, established methods are not sufficiently integrated into simulation and structural analysis workflows. A novel three-part method is proposed for the design and simulation of extrusion-based AM that includes topoForm, an evolutionary multi-agent software capable of generating diverse topological designs; matForm, an agent-based AM robot tool-path generator that is geometrically agnostic and adapts material effects to local structural and geometric data; and matSim, a material-physics simulation environment that enables high-resolution AM material effects to be simulated and structurally and aesthetically analyzed. The research enables designers to incorporate and simulate material behavior prior to fabrication and produce instructions suitable for industrial robot AM. The approach is demonstrated in the generative design of four AM column-like elements.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_819498 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002