CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 552

_id ecaade2020_150
id ecaade2020_150
authors Stojanovski, Todor
year 2020
title Role-playing planning games as educational tool - Experiences of teaching with educational games in Sweden
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 525-534
doi https://doi.org/10.52842/conf.ecaade.2020.1.525
summary Teaching about cities and planning involves complexities of understanding urban development in space and time, evolution and transformation of cities, urban politics, actors and stakeholders. Delivering efficient ways of teaching, is very important for educators, particularly among lecturers at universities who work with urban planning and design. Games can be used as educational tools and role-playing games can capture the political struggle of different actors and stakeholders involved in planning processes. Games can enable students to experience urban development and take roles of different actors and stakeholders in the planning and development processes and practice the art of negotiations in urban politics. Two educational games were written for the planning courses at KTH Royal Institute of Technology, Sweden. Since 2011, 17 games were played in different courses. Data from the evaluation forms was collected on 14 games and 277 students answered questions. This paper analyses the evaluation forms and the comments of the students who took part in the games and discusses gaming as an educational tool. The experiences with role-playing planning games are very positive. These ratings occurs consistently in each game that was played with very small variations.
keywords urban planning; urban design; role-playing games; education tool; teaching; gaming
series eCAADe
email
last changed 2022/06/07 07:56

_id cdrf2019_17
id cdrf2019_17
authors Chuan Liu, Jiaqi Shen, Yue Ren, and Hao Zheng
year 2020
title Pipes of AI – Machine Learning Assisted 3D Modeling Design
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_2
summary Style transfer is a design technique that is based on Artificial Intelligence and Machine Learning, which is an innovative way to generate new images with the intervention of style images. The output image will carry the characteristic of style image and maintain the content of the input image. However, the design technique is employed in generating 2D images, which has a limited range in practical use. Thus, the goal of the project is to utilize style transfer as a toolset for architectural design and find out the possibility for a 3D modeling design. To implement style transfer into the research, floor plans of different heights are selected from a given design boundary and set as the content images, while a framework of a truss structure is set as the style image. Transferred images are obtained after processing the style transfer neural network, then the geometric images are translated into floor plans for new structure design. After the selection of the tilt angle and the degree of density, vertical components that connecting two adjacent layers are generated to be the pillars of the structure. At this stage, 2D style transferred images are successfully transformed into 3D geometries, which can be applied to the architectural design processes. Generally speaking, style transfer is an intelligent design tool that provides architects with a variety of choices of idea-generating. It has the potential to inspire architects at an early stage of design with not only 2D but also 3D format.
series cdrf
email
last changed 2022/09/29 07:51

_id acadia20_720
id acadia20_720
authors Farahi, Behnaz
year 2020
title Can the subaltern speak?
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 720-729.
doi https://doi.org/10.52842/conf.acadia.2020.1.720
summary How could design be used as a method of interrogation for addressing larger cultural, social, or political issues? How could we explore the possibility of using emerging technologies such as robotics and artificial intelligence in order to subvert the status quo? The project presented in this paper is inspired by the historical masks, known as Niqab, worn by the Bandari women from southern Iran. It has been said that these masks were developed during Portuguese colonial rule as a way to protect the wearer from the gaze of slave masters looking for pretty women. In this project two robotic masks seemingly begin to develop their own language to communicate with each other, blinking their eyelashes in rapid succession, using Morse code generated by artificial intelligence (AI). The project draws on a Facebook experiment where two AI bots began to develop their own language. It also draws on an incident when an American soldier used his eyes to blink the word “TORTURE” using Morse code during his captivity in Vietnam, and stories of women using code to report domestic abuse during the COVID-19 lockdown. Here the “wink” of the sexual predator is subverted into a language to protect women from the advances of a predator. Through the lens of the design methodology that is referred to as “critical making,” this project bridges AI, interactive design, and critical thinking. Moreover, while most feminist discourse takes a Eurocentric view, this project addresses feminism from a non-Western perspective.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia23_v1_242
id acadia23_v1_242
authors Noel, Vernelle A.
year 2023
title Carnival + AI: Heritage, Immersive virtual spaces, and Machine Learning
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 242-245.
summary Built on a Situated Computations framework, this project explores preservation, reconfiguration, and presentation of heritage through immersive virtual experiences, and machine learning for new understandings and possibilities (Noel 2020; 2017; Leach and Campo 2022; Leach 2021). Using the Trinidad and Tobago Carnival - hereinafter referred to as Carnival - as a case study, Carnival + AI is a series of immersive experiences in design, culture, and artificial intelligence (AI). These virtual spaces create new digital modes of engaging with cultural heritage and reimagined designs of traditional sculptures in the Carnival (Noel 2021). The project includes three virtual events that draw on real events in the Carnival: (1) the Virtual Gallery, which builds on dancing sculptures in the Carnival and showcases AI-generated designs; (2) Virtual J’ouvert built on J’ouvert in Carnival with AI-generated J’ouvert characters specific; and (3) Virtual Mas which builds on the masquerade.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2020_091
id caadria2020_091
authors Ren, Yue and Zheng, Hao
year 2020
title The Spire of AI - Voxel-based 3D Neural Style Transfer
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 619-628
doi https://doi.org/10.52842/conf.caadria.2020.2.619
summary In the architecture field, humans have mastered various skills for creating unique spatial experiences with unknown interplays between known contents and styles. Meanwhile, machine learning, as a popular tool for mapping different input factors and generating unpredictable outputs, links the similarity of the machine intelligence with the typical form-finding process. Style Transfer, therefore, is widely used in 2D visuals for mixing styles while inspiring the architecture field with new form-finding possibilities. Researchers have applied the algorithm in generating 2D renderings of buildings, limiting the results in 2D pixels rather than real full volume forms. Therefore, this paper aims to develop a voxel-based form generation methodology to extend the 3D architectural application of Style Transfer. Briefly, through cutting the original 3D model into multiple plans and apply them to the 2D style image, the stylized 2D results generated by Style Transfer are then abstracted and filtered as groups of pixel points in space. By adjusting the feature parameters with user customization and replacing pixel points with basic voxelization units, designers can easily recreate the original 3D geometries into different design styles, which proposes an intelligent way of finding new and inspiring 3D forms.
keywords Form Finding; Machine Learning; Artificial Intelligence; Style Transfer
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2020_283
id ecaade2020_283
authors Sebestyen, Adam and Tyc, Jakub
year 2020
title Machine Learning Methods in Energy Simulations for Architects and Designers - The implementation of supervised machine learning in the context of the computational design process
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 613-622
doi https://doi.org/10.52842/conf.ecaade.2020.1.613
summary Application of Machine Learning (ML) in the field of architecture is a worthwhile topic to discuss in the context of digital architecture. Authors propose to extend this discussion, presenting an integrated ML pipeline built with the state-of-the-art data science tools. To investigate the affordances of such pipelines, an ML model being able to predict the environmental metrics of a generalized facade system is created. This approach is valid for arbitrary facades, as long as the proposed design could be discretized in the form analogous to the data generated for the ML model training. The presented experiment evaluates the precision of the sunlight hours and radiation values predictions, aiming at the application in the early design phases. Conducted investigation builds up on the knowledge embedded in the Grasshopper and Ladybug toolsets. Potential application of Convolutional Neural Networks and categorical datasets for classifications tasks to increase the precision of the ML models have been identified. Possibility to extend the approach beyond the workspace of Rhino and Grasshopper is suggested. Further research outlook, investigating the data pattern recognition capabilities in relation to the three-dimensional forms discretized as multidimensional arrays, is stated.
keywords Machine Learning; Environmental Analysis; Parametric Design; Supervised Learning
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac202321102
id ijac202321102
authors Özerol, Gizem; Semra Arslan Selçuk
year 2023
title Machine learning in the discipline of architecture: A review on the research trends between 2014 and 2020
source International Journal of Architectural Computing 2023, Vol. 21 - no. 1, pp. 23–41
summary Abstract Through the recent technological developments within the fourth industrial revolution, artificial intelligence (AI) studies have had a huge impact on various disciplines such as social sciences, information communication technologies (ICTs), architecture, engineering, and construction (AEC). Regarding decision-making and forecasting systems in particular, AI and machine learning (ML) technologies have provided an opportunity to improve the mutual relationships between machines and humans. When the connection between ML and architecture is considered, it is possible to claim that there is no parallel acceleration as in other disciplines. In this study, and considering the latest breakthroughs, we focus on revealing what ML and architecture have in common. Our focal point is to reveal common points by classifying and analyzing current literature through describing the potential of ML in architecture. Studies conducted using ML techniques and subsets of AI technologies were used in this paper, and the resulting data were interpreted using the bibliometric analysis method. In order to discuss the state-of-the-art research articles which have been published between 2014 and 2020, main subjects, subsets, and keywords were refined through the search engines. The statistical figures were demonstrated as huge datasets, and the results were clearly delineated through Sankey diagrams. Thanks to bibliometric analyses of the current literature of WOS (Web of Science), CUMINCAD (Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD, and CAAD futures), predictable data have been presented allowing recommendations for possible future studies for researchers.
keywords Artificial intelligence, machine learning, deep learning, architectural research, bibliometric analysis
series journal
last changed 2024/04/17 14:30

_id ijac202018205
id ijac202018205
authors Ahlquist, Sean
year 2020
title Negotiating human engagement and the fixity of computational design: Toward a performative design space for the differently-abled bodymind
source International Journal of Architectural Computing vol. 18 - no. 2, 174-193
summary Computational design affords agency: the ability to orchestrate the material, spatial, and technical architectural system. In this specific case, it occurs through enhanced, authored means to facilitate making and performance—typically driven by concerns of structural optimization, material use, and responsivity to environmental factors—of an atmospheric rather than social nature. At issue is the positioning of this particular manner of agency solely with the architect auteur. This abruptly halts—at the moment in which fabrication commences—the ability to amend, redefine, or newly introduce fundamentally transformational constituents and their interrelationships and, most importantly, to explore the possibility for extraordinary outcomes. When the architecture becomes a functional, social, and cultural entity, in the hands of the idealized abled-bodied user, agency—especially for one of an otherly body or mind—is long gone. Even an empathetic auteur may not be able to access the motivations of the differently-abled body and neuro- divergent mind, effectively locking the constraints of the design process, which creates an exclusionary system to those beyond the purview of said auteur. It can therefore be deduced that the mechanisms or authors of a conventional computational design process cannot eradicate the exclusionary reality of an architectural system. Agency is critical, yet a more expansive terminology for agent and agency is needed. The burden to conceive of capacities that will always be highly temporal, social, unpredictable, and purposefully unknown must be shifted far from the scope of the traditional directors of the architectural system. Agency, and who it is conferred upon, must function in a manner that dissolves the distinctions between the design, the action of designing, the author of design, and those subjected to it.
keywords Adaptive environments, neurodiversity, inclusion, systems thinking, computational design, disability theory, material systems, design agency
series journal
email
last changed 2020/11/02 13:34

_id acadia20_198p
id acadia20_198p
authors Birkeland, Jennifer; Scelsa, Jonathan A.
year 2020
title Live L’oeil – Through the Looking Ceiling
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 198-201
summary Following the proliferation of linear perspective during the Renaissance, the hegemony of the vantage point was often problematically used to signify the patron’s dominance. During the mannerist era, we witnessed the creation of elaborate rooms, painted in architectural linear perspective establishing the illusionary space of faraway lands - a measure of optic imperialism wherein the conquests of the west played out in the domestic decoration of the elite later provided to the public as a societal spectacle in the form of the panorama. Within these architectural illusions, or Quadratura as they were named in Italy, lies the most notable and justifiable critique of design by vantage point, the question ‘which vantage point is privileged?’ History not surprisingly reveals that the typical vantage point was most problematically centered at one and three-quarter meters above the ground – coincident with five centimeters below the average height of a human European male. The design of architectural form through view or spatial image has arguably perpetuated this act of optic bias. This project addresses this problematic practice of design by vantage point by utilizing motion sensors to liberate the virtual space of a canonic example of quadrature from its confines within a singular vantage point. The authors digitally modeled the projective space of Andrea Pozzo’s vision for the Church of Sant’Ignazio di Loyola in Rome, scaled and fit to a gallery space outfitted with a canvas to inform a ceiling plane. Anamorphic images of the virtual heavenly space, as seen through the canvas ceiling picture plane, were created from the digital model and encoded to the individual moments in the room. Individuals who moved through the gallery were followed by the illusion of the heavenly space, creating a live l’oeil distortion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_839
id sigradi2020_839
authors Braida, Frederico; Zancaneli, Mariana Alves; Gouvea, Isabela; Chagas, Icaro
year 2020
title Biomimicry: an approach from the CumInCAD database
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 839-846
summary This article addresses the theme of biomimetics in the context of the interaction between architecture, urbanism, design and digital technologies. The main aim is to present the state of the art of the research published in the SIGraDI congresses and congresses of the sister associations. The methodology adopted was systematic literature and bibliometric review. The ComInCAD database was chosen as the data collection source. In the end, the text reveals in which associations the theme of biomimetics is more explored, as well as the authors who are most influential in this field of knowledge.
keywords Architecture, Nature, Biomimetics, Literature Review, CumInCAD
series SIGraDi
email
last changed 2021/07/16 11:53

_id acadia20_584
id acadia20_584
authors Brás, Catarina; Castelo-Branco, Renata; Menezes Leitao, António
year 2020
title Parametric Model Manipulation in Virtual Reality
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 584-593.
doi https://doi.org/10.52842/conf.acadia.2020.1.584
summary Algorithmic design (AD) uses algorithms to describe architectural designs, producing results that are visual by nature and greatly benefit from immersive visualization. Having this in mind, several approaches have been developed that allow architects to access and change their AD programs in virtual reality (VR). However, programming in VR introduces a new level of complexity that hinders creative exploration. Solutions based in visual programming offer limited parameter manipulation and do not scale well, particularly when used in a remote collaboration environment, while those based in textual programming struggle to find adequate interaction mechanisms to efficiently modify existing programs in VR. This research proposes to ease the programming task for architects who wish to develop and experiment with collaborative textual-based AD in VR, by bringing together the user-friendly features of visual programming and the flexibility and scalability of textual programming. We introduce an interface for the most common parametric changes that automatically generates the corresponding code in the AD program, and a hybrid programming solution that allows participants in an immersive collaborative design experience to combine textual programming with this new visual alternative for the parametric manipulation of the design. The proposed workflow aims to foster remote collaborative work in architecture studios, offering professionals of different backgrounds the opportunity to parametrically interact with textual-based AD projects while immersed in them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_464
id sigradi2020_464
authors Builes Vélez, Ana Elena; Celani, Pierfrancesco
year 2020
title Application of the Sustainable Urban Environments model based on the Smart Outdoor approach in the city of Medellín
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 464-469
summary The quality of an urban space significantly influences the habitability of a city. In an era where buildings are becoming more and more "intelligent", outdoor space needs to evolve to make it more welcoming and to allow it to be shared and appropriate, capable of expanding opportunities and functionality for the inhabitant who lives in it. In this context the COGITO project, is exploring ways to extend the cognitive logic typical of intelligent buildings to the urban space. We propose to appropriate the model developed in COGITO and apply it in a case study of the city of Medellin.
keywords Smart Cities, Urban Space, Sustainability, Smart Outdoor
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_638
id acadia20_638
authors Claypool, Mollie; Jimenez Garcia, Manuel; Retsin, Gilles; Jaschke, Clara; Saey, Kevin
year 2020
title Discrete Automation
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 638-647.
doi https://doi.org/10.52842/conf.acadia.2020.1.638
summary Globally, the built environment is inequitable. And while construction automation is often heralded as the solution to labor shortages and the housing crisis, such methods tend to focus on technology, neglecting the wider socioeconomic contexts. Automated Architecture (AUAR), a spinoff of AUAR Labs at The Bartlett School of Architecture, UCL, asserts that a values-centered, decentralized approach to automation centered around local communities can begin to address this material hegemony. The paper introduces and discusses AUAR’s platform-based framework, Discrete Automation, which subverts the status quo of automation that excludes those who are already disadvantaged into an inclusive network capable of providing solutions to both the automation gap and the assembly problem. Through both the wider context of existing modular housing platforms and issues of the current use of automated technologies in architectural production, Discrete Automation is discussed through the example of Block Type A, a discrete timber building system, which in conjunction with its combinatorial app constitutes the base of a community-led housing platform developed by AUAR. Built case studies are introduced alongside a discussion of the applied methodologies and an outlook on the platform’s potential for scalability in an equitable, sustainable manner.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_903
id sigradi2020_903
authors Herran Cuartas, Coppelia
year 2020
title Domestic spaces design for allow income housing
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 903-911
summary This research is related to the urban transformation that Medellín underwent during the 2004-2011 administrations, in which large architectural projects were implemented in the poorest and most violent areas of the city. To inquire about the effectiveness of these interventions, we look at one of the housing projects worthies of different international recognitions, called the Housing Consolidation of the Quebrada Juan Bobo. Characterized by generating Social Interest Housing (Vivienda de Interés Social-VIS in Spanish) in the creek’s basin, this project benefited 1,240 people who were relocated within the same neighborhood, including some on the same space next to the creek, where their old home was built.
keywords Live, Quality of life, Home, Domestic practices, Informality
series SIGraDi
email
last changed 2021/07/16 11:53

_id acadia20_154p
id acadia20_154p
authors Josephson, Alex; Friedman, Jonathan; Salance, Benjamin; Vasyliv, Ivan; Melnichuk, Tim
year 2020
title Gusto: Rationalizing Computational Masonry Design
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 154-159
summary Gusto 501 is a multi-level Infill Building on the footprint of an old car garage. Surrounded by an overpass and former factories, the restaurant and event spaces take the form of a ‘Hyper garage’ as a nod to its urban context. The interior is punctuated with standard terracotta blocks formed to create an intricate play of shadows during the day and embedded with LEDs to provide atmospheric illumination at night. The client's vision, our narrative, and the program demanded an innovative use of the primal material: terracotta. The scale of the project required the use of 3,700 blocks. Within the array wrapped around a 50ft tall interior volume, each block needed to be formed and sequenced uniquely to maintain structural integrity and interface with building systems, and express the sculptural qualities our team had designed. Standard approaches to the masonry could not achieve the effects our team was striving for - we had to develop our ground-up process to manufacture and install mass-customized masonry. The design process involved an algorithmic approach to a series of cuts and geometric manipulations to the blocks that allowed for near-endless combinations/configurations to create a dynamic interior facade system. Partisans, partnering with a terracotta block manufacturer, a local mason, and a masonry engineer, pursued simplifying production using wire cutter systems. Digital and physical mock-ups were then used to create a robust library of parameterized design criteria that optimized corbelling, grout thickness, weight, and fabrication complexity. Working sets of drawings were automated through a fully integrated BIM model, simplifying and speeding up installation. The challenge of marrying these processes with the physical realities of installation required another level of collaboration that included the masons themselves and the electricians who would eventually combine lighting systems into the sculpted block array.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia20_484
id acadia20_484
authors Kim, Namjoo; Otitigbe, Eto; Shannon, Caroline; Smith, Brian; Seyedahmadian, Alireza; Höweler, Eric; Yoon, J. Meejin; Marshall, Durham; Durham, James
year 2020
title Parametric Photo V-Carve for Variable Surfaces
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 484-493.
doi https://doi.org/10.52842/conf.acadia.2020.1.484
summary This research project was part of the design and construction of the Memorial to Enslaved Laborers (MEL) at the University of Virginia (UVA). The MEL was dedicated to an estimated 4,000 enslaved persons who worked at UVA between 1817 and 1865. The 80-foot-diameter memorial is a tapered toroidal shape composed of 75 stone blocks. This project demonstrates how computational design tools along with robotic digital fabrication can be used to achieve unique social and experiential effects in an architectural application. The memorial’s design was informed by an extensive community engagement process that clarified the importance of including a visual representation of enslaved people on the memorial. With this input, the eyes of Isabella Gibbons were selected to be used as a symbolic representation of triumph on the outer wall of the memorial. The MEL project could not rely solely on prior methods or existing software applications to design and fabricate this portrait due to four particularities of the project: material, geometry, representation, and scale. To address these challenges, the MEL design team employed an interdisciplinary collaborative process to develop an innovative parametric design technique: parametric photo V-carve. This technique allowed the MEL design team to render a large-scale photo-realistic portrait into stone. This project demonstrates how the synthesis of artistic motivations, computational design, and robotic digital fabrication can develop unique expressions that shape personal and cultural experiences.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_052
id ecaade2020_052
authors Monteiro, Verner, Januário, Pedro and Veloso, Maísa
year 2020
title Design collaboration towards constructibility in parametric design process - a design experiment with architecture students
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 305-314
doi https://doi.org/10.52842/conf.ecaade.2020.1.305
summary The use of parametric modeling in architectural design processes has made possible the creation of novel complex-shaped projects, but also launched new materialization challenges. This hard task addressed to a relevant need to comprehend the impact of constructibility on parametric design teaching. We analyzed how multicultural collaborative teams of students introduced construction constraints in parametric design processes, in an European architecture school. The method consisted of two design experiments with architecture students who designed a pavilion, starting from constraints such as time, material and pre-existences. The results addressed that the introduction of construction constraints since the early conceptual design stages conditioned the architectural shape, but also optimized time, decreased rework, and helped on decision-making. Despite the multiculturality, the students' lack of knowledge in construction methods indicated a high need for integration with engineering students and industry partners since graduation.
keywords Parametric Design; Constructibility; Collaborative Design; Design Process
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2020_215
id ecaade2020_215
authors Zhu, Yuehan, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Integrated Co-designing Using Building Information Modeling and Mixed Reality with Erased Backgrounds for Stock Renovation
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 153-160
doi https://doi.org/10.52842/conf.ecaade.2020.1.153
summary The stock renovation has become an important area of study. As customized design becomes increasingly popular, the design methods with occupants' participation are increasingly valued. The designers need an intuitive, understandable design method that allows non-professional occupants can also participate in the design process. Therefore, the proposed system explores the applicability of integrating the Building Information Modeling (BIM) model into the Mixed Reality (MR) environment to display realistic and interactive design plans. Occupants who involved in the renovation design wearing head mounted display (HMD) would experience the same MR environment. All of them can use gestures to interact with each other and control all the virtual structures and objects. This MR experience can help users to better understand other's intentions, and they can evaluate the design plans more easily. This paper will introduce a prototype of the integrated co-designing system using multiple HMDs connected in a local area network (LAN).
keywords Mixed Reality; Diminished Reality; Building Information Modeling; Co-Designing; Stock Renovation
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2020_406
id sigradi2020_406
authors Lombardi, Davide; Dounas, Theodoros; Cheung, Lok Hang; Jabi, Wassim
year 2020
title Blockchain Grammars for Validating the Design Process
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 406-411
summary This paper presents and develops the concept of Decentralised Autonomous Organisation (DAO) as a platform for collaboration, via a design scenario in which Blockchain (BC) technology is implemented for validation purposes. The envisioned scenario simulates designers proposing multiple solutions for a given task and adopting shape grammars and environmental analysis and regulations as design drivers. Proposed solutions are uploaded, stored, presented, and evaluated in a DAO in which the decision process gets validated via the reputation of the participants and its governance system. This study lays the foundation and ignites the development of a larger framework in which design collaboration and competition are fostered and results secured, impacting design value and financial transactions.
keywords Shape grammar, Blockchain, Decentralised autonomous organisation, Design validation
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2020_306
id caadria2020_306
authors Akizuki, Yuta, Bernhard, Mathias, Kakooee, Reza, Kladeftira, Marirena and Dillenburger, Benjamin
year 2020
title Generative Modelling with Design Constraints - Reinforcement Learning for Object Generation
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 445-454
doi https://doi.org/10.52842/conf.caadria.2020.1.445
summary Generative design has been explored to produce unprecedented geometries, nevertheless design constraints are, in most cases, second-graded in the computational process. In this paper, reinforcement learning is deployed in order to explore the potential of generative design satisfying design objectives. The aim is to overcome the three issues identified in the state of the art: topological inconsistency, less variations in style and unpredictability in design. The goal of this paper is to develop a machine learning framework, which works as an intellectual design interpreter capable of codifying an input geometry to form a new geometry. Experiments demonstrate that the proposed method can generate a family of tables of unique aesthetics, satisfying topological consistency under given constraints.
keywords generative design; computational design; data-driven design; reinforcement learning; machine learning
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_133534 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002