CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id acadia20_708
id acadia20_708
authors Charbel, Hadin; López Lobato, Déborah
year 2020
title Between Signal and Noise
doi https://doi.org/10.52842/conf.acadia.2020.1.708
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 708-718.
summary Climate change continues to have noticeable and accelerated impacts on various territories. Previously predictable and recognizable patterns used by humans and nonhumans alike are perpetually being altered, turning localized signals into noise and effectively disrupting indigenous modes of life. While the use of certain technologies such as data collection, machine learning, and automation can render these otherwise patternless information streams into intelligible content, they are generally associated as being “territorializing,” as an increase in resolution generally lends itself to control, exploitation, and colonization. Contrarily, indigenous groups with long-lasting relationships that have evolved over time have distinct ways of reading and engaging with their contexts, developing sustainable practices that, while effective, are often overlooked as being compatible with contemporary tools. This paper examines how the use of traditionally territorializing technologies can be paired with indigenous knowledge and protocols in order to operate between signal and noise, rendering perverse changes in the landscape comprehensible while also presenting their applications as a facet for sociopolitical, cultural, and ecological adaptation. A methodology defined as “decoding” and “recoding” presents four distinct case studies in the Arctic, addressing various scales and targets with the aim of disrupting current trends in order to grant and/or retain autonomy through what can be read as a form of preservation via augmented adaptation.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_542
id ecaade2020_542
authors Brown, Andre, Liu, Yisi, Webb, Nicholas and Knight, Mike
year 2020
title Interpreting and exploiting narrative as a sketch design generator for application in VE
doi https://doi.org/10.52842/conf.ecaade.2020.1.449
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 449-458
summary The research in this paper focusses on how a narrative text can be the generator of an architectural drawing, or other architectural representation, such as an Architectural Virtual Environment. The drawn physical sketch has traditionally played that role. A particular approach to narrative has been important for some notable architects and their architecture. Ian Ritchie (2014), for instance, celebrates the use of poetry to describe the essential spirit of a scheme before any drawing is done. The work in the paper here describes the proposition to capture such narrative text in a systematic and structured way. We describe foundational work on how the captured narrative text has been translated into a contemporary, computer-mediated, design development environment. Different narrative accounts recalling a now demolished house form the focus case study. This case study is the vehicle through which the initial principles establishing how best to move from narrative to virtual representation are established and tested.
keywords virtual environment; narrative; sketch; virtual reality
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_416
id acadia20_416
authors Genadt, Ariel
year 2020
title Discrete Continuity in the Urban Architectures of H. Hara & K. Kuma
doi https://doi.org/10.52842/conf.acadia.2020.1.416
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 416-424.
summary The 2020 pandemic has laid bare the ambiguous value of the virtual proximity that distributed computing enables. The remote interaction it ushered in at an unprecedented scale also spawned social isolation, which is symbolically underscored by the reliance of this form of connectivity on individuals’ discrete digital identification. This cyber-spatial dualism may be called ‘discrete continuity,’ and it already appeared in architectural thought in the 1960s with the advent of cybernetics and the first computers. The duality resurfaced in the 1990s in virtual projects, when architectural software was first widely commercialized, and it reappeared in built form in the past decade. This paper sheds light on the architectural aspects of this conceptual duality by identifying the use of discreteness and continuity in the theories of two Japanese architects, Hiroshi Hara (b.1936) and his former student, Kengo Kuma (b.1954), in their attempts to combine the two topological conditions as metaphors of societal structures. They demonstrate that the onset of the current condition, while new in its pervasiveness, has been latent in architectural thinking for several decades. This paper examines Hara’s and Kuma’s theories in light of the author’s interviews with the architects, their writings, and specific projects that illustrate metaphoric translations of topological terms into social structures, reflected in turn in the organization of urban schemes and building parts. While Hara’s and Kuma’s respective implementations are poles apart visually and materially, they share the idea that the discrete continuity of contemporary urban experience ought to be reflected in architecture. This link between their ideas has previously been overlooked.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_034
id ecaade2020_034
authors Hamilton, William, Butler, Andrew, Gardner, Nicole, Haeusler, M. Hank, Ramos, Cristina and Zavoleas, Yannis
year 2020
title Keeping up with the Code - Communicating the Decision Making History of Architectural Scripts
doi https://doi.org/10.52842/conf.ecaade.2020.1.633
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 633-642
summary As the architecture industry engages computational methods to automate and optimise design processes, decision-making becomes embedded and hidden within complex code. Even where employees understand the procedure and logic of architectural scripts they may struggle to understand those developed by others and used on different projects. Accordingly, this paper outlines the research and development of a workflow to trace and document the decision-making history (DMH) of architectural scripts. This develops the relational database Huginn to test the feasibility of tracing decision-making history in scripting through a Python Web framework that sends data in a JavaScript Object Notation (JSON) format from Grasshopper. The research outcomes successfully demonstrate a system that can link a series of objects to their 'decision' origins. This contributes to informing the development of theoretically-grounded coding protocols and simultaneously demystifying the complexity of architectural scripting and communicating the significance of data-augmented decision making within contemporary architectural design processes.
keywords Automation in Architecture; Design Optimisation; Architectural Scripting; Decision Making History; Database; Visual Programming
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2020_511
id ecaade2020_511
authors Maierhofer, Mathias, Ulber, Marie, Mahall, Mona, Serbest, Asli and Menges, Achim
year 2020
title Designing (for) Change - Towards adaptivity-specific architectural design for situational open Environments
doi https://doi.org/10.52842/conf.ecaade.2020.2.575
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 575-584
summary The introduction of cybernetic principles to the architectural discourse some 50 years ago stimulated a new notion of buildings as dynamic and under-specified systems. Although their traditional conception as static and deterministic objects has remained predominant to this day, concepts for adaptive architecture capable of interacting with their surroundings and occupants have gained renewed attention in recent decades. However, investigations so far have largely concentrated on small-scale applications or individual adaptation strategies. The notion of situational open Environments, as argued in this paper, provides a framework through which adaptivity can be conceived and explored more holistically as well as on an inhabitable scale. Environments reject deterministic design and adaptation solutions and hence call for integrative and interactive design strategies that not only allow for the exploration of particularly adaptable (i.e. underspecified) architectural morphologies, but also for the communication and negotiation during their further development beyond deployment. In respect thereof, this paper discusses the potentials and implications of computational (design) strategies, meaning the agencies of buildings, designers, residents, and surroundings. The presented research originates from the author's involvement in an interdisciplinary research project centered around the development of an adaptive high-rise building that incorporates various adaptation strategies.
keywords Adaptive Architecture; Architectural Environment; Computational Design; Agent-based Modeling; Architecture Theory; Cybernetics
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia20_220p
id acadia20_220p
authors Rieger, Uwe; Liu, Yinan
year 2020
title LightWing II
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 220-225
summary LightWing II is an immersive XR installation that explores hybrid design strategies equally addressing physical and digital design parameters. The interactive project links a kinetic structure with dynamic digital information in the form of 3D projected imagery and spatial sound. A key component of the project was the development of a new rendering principle that allows the accurate projection of stereoscopic images on a moving target screen. Using simple red/cyan cardboard glasses, the system expands the applications of contemporary AR headsets beyond an isolated viewing towards a communal multi-viewer event. LightWing`s construction consists of thin flexible carbon fibre rods used to tension an almost invisible mesh screen. The structure is asymmetrically balanced on a single pin joint and monitored by an IMU. A light touch sets the delicate wing-like object into a rotational oscillation. As a ‘hands-on’ experience, LightWing II creates a mysterious sensation of tactile data and enables the user to navigate through holographic narratives assembled in four scenes, including the interaction with swarms of three winged creatures, being immersed in a silky bubble, and a journey through a velvet wormhole. The user interface is dissolved through the direct linkage between the physical construction and the dynamic digital content. The project was developed at the arc/sec Lab at the University of Auckland. The Lab explores user responsive constructions where dynamic properties of the virtual world influence the material world and vice versa. The Lab’s vision is to re-connect the intangible computer world to the multisensory qualities of architecture and urban spaces. With a focus on intuitive forms of user interaction, the arc/sec Lab uses large-scale prototypes and installations as the driving method for both the development and the demonstration of new cyber-physical design principles.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_218
id acadia20_218
authors Rossi, Gabriella; Nicholas, Paul
year 2020
title Encoded Images
doi https://doi.org/10.52842/conf.acadia.2020.1.218
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 218-227.
summary In this paper, we explore conditional generative adversarial networks (cGANs) as a new way of bridging the gap between design and analysis in contemporary architectural practice. By substituting analytical finite element analysis (FEA) modeling with cGAN predictions during the iterative design phase, we develop novel workflows that support iterative computational design and digital fabrication processes in new ways. This paper reports two case studies of increasing complexity that utilize cGANs for structural analysis. Central to both experiments is the representation of information within the data set the cGAN is trained on. We contribute a prototypical representational technique to encode multiple layers of geometric and performative description into false color images, which we then use to train a Pix2Pix neural network architecture on entirely digital generated data sets as a proxy for the performance of physically fabricated elements. The paper describes the representational workflow and reports the process and results of training and their integration into the design experiments. Last, we identify potentials and limits of this approach within the design processes.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_154
id caadria2020_154
authors Stojanovic, Vladeta, Hagedorn, Benjamin, Trapp, Matthias and Döllner, Jürgen
year 2020
title Ontology-Driven Analytics for Indoor Point Clouds
doi https://doi.org/10.52842/conf.caadria.2020.2.537
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 537-546
summary Automated processing, semantic enrichment and visual analytics methods for point clouds are often use-case specific for a given domain (e.g, for Facility Management (FM) applications). Currently, this means that applicable processing techniques, semantics and visual analytics methods need to be selected, generated or implemented by human domain experts, which is an error-prone, subjective and non-interoperable process. An ontology-driven analytics approach can be used to solve this problem by creating and maintaining a Knowledge Base, and utilizing an ontology for automatically suggesting optimal selection of processing and analytics techniques for point clouds. We present an approach of an ontology-driven analytics concept and system design, which supports smart representation, exploration, and processing of indoor point clouds. We present and provide an overview of high-level concept and architecture for such a system, along with related key technologies and approaches based on previously published case studies. We also describe key requirements for system components, and discuss the feasibility of their implementation within a Service-Oriented Architecture (SOA).
keywords Knowledge Base; Point Clouds; Semantic Enrichment; Service-Oriented Architecture; Ontology
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2020_188
id caadria2020_188
authors Suzuki, Takaharu, Ikeda, Hikaru, Takeuchi, Issei, Matsunaga, Fumiya, Sumitomo, Eri and Ikeda, Yasushi
year 2020
title Holonavi - A study on User Interface for Assembly Guidance System with Mixed Reality in a Timber Craft of Architecture
doi https://doi.org/10.52842/conf.caadria.2020.1.691
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 691-700
summary This paper introduces ideas to use Mixed Reality (MR) technologies in craftsman's work of architecture.One of the backgrounds of this study is emerging technology of Mixed Reality becoming much easier to use recently with new devices such as Microsoft Hololens. Among many possible applications of this technique in architectural work, we particularly choose Japanese traditional timber joinery 'Kumiki' as a model case of complicated architectural work.We found that people need a certain sense of 3D recognition and knowledge about right order of assemble. That is what we can suggest for users with our MR guidance system named 'Holonavi' which can show appropriate information in 3D vision in real time. The aim of our research is to find useful knowledge about effective ways and sufficient information to guide users. As a conclusion, we found that guidance with MR technology gives users to have a recognition more effectively for take of right action when they are moving their viewpoint around the object and when they located in the range of reachable distance to the objects. It is the first achievement for use of 'Holonavi' to let people feel more fun to craft something by their hands aided by computer.
keywords Craftsman’s work; Mixed Reality; Digital Construction; Augmented Reality; Hololens
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia20_678
id acadia20_678
authors Tursack, Hans
year 2020
title Theoretical Notes on the Aesthetics of Architectural Texture Mapping
doi https://doi.org/10.52842/conf.acadia.2020.1.678
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 678-687.
summary This paper explores several historical and contemporary examples of architecture that employ graphic texture mapping in their design processes. The technique of texture mapping is outlined as a particular formal relationship between images, geometric scaffolds, and new material explorations. Texture-mapped architecture is a relatively contemporary phenomenon that is distinct from several known genres of image-building hybrids such as media facades, Ganzfeld art installations, building-scale projection experiments, postmodern semiotic billboards, and affective ornamental pattern strategies. Architectural texturing utilizes UV editors in modeling and animation software platforms to place and edit two-dimensional graphics or photographic images on three-dimensional models. UV editors allow an unprecedented degree of precision during the design process; image and geometry can be manipulated in tandem and two-dimensional source material can be edited and live-updated. Material manifestations of this process use commercial printing technologies and one-off processes developed by artists and designers to generate building-grade printed envelopes. The theoretical wager of the paper is that the accessibility/availability of texture mapping techniques, digital printing technologies, and new materials (such as 3M’s vinyl wraps) have triggered a graphic impulse in contemporary experimental architecture culture. Images, color theory, and flat graphics are now central to compositional theory as it is taught in academia and applied in the field.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_407
id ecaade2020_407
authors Yalçinkaya, Sezgi and Delikanli, Burak
year 2020
title Variable Voxel Computing Method - Innovative Approaches to Reduce the Computing Load in Voxel-based Solid Modeling and New Representation Methods
doi https://doi.org/10.52842/conf.ecaade.2020.1.663
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 663-671
summary The concept of "voxel" refers to a volumetric element or volumetric pixel and corresponds to the smallest piece that can be computed in solid and complex model analysis. The voxel-based solid modeling commonly used by geometry-based CAD (Computer-Aided Design) applications. Whilst other geometry-based modeling methods, it uses pixels as the smallest unit instead of dots or vectors. However, the size of the data contained in the smallest unit causes problems such as computing load and representation inaccuracies. This study fundamentally aims to find a fast and effective method for voxel-based solid modeling. While doing that it presents a new visualization algorithm. During the research, the transformation of a geometric model into voxels, then the reproduction of these voxels, and finally, the representation method were practiced and compared. In this process, three complex models were developed and compared by their complexity, their voxelization time, and the amount of time that spend during the formation. As a result, the study proposes new representation methods for voxel-based solid modeling.
keywords Voxel-based Modeling; Solid Models; Representation Methods; Computing Load
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
doi https://doi.org/10.52842/conf.acadia.2020.1.516
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_484
id ecaade2020_484
authors Aguilar, Pavel, Borunda, Luis and Pardal, Cristina
year 2020
title Additive Manufacturing of Variable-Density Ceramics, Photocatalytic and Filtering Slats
doi https://doi.org/10.52842/conf.ecaade.2020.1.097
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 97-106
summary Additive Manufacturing (AM) offers the potential development of novel architectural applications of ceramic building components that can be engineered at the level of material to the extent of designing its performance and properties by density variations. This research presents a computational method and fabrication technique emulating complex material behavior via AM of intricate geometries and presents components with photocatalytic and climatic properties. It proposes an innovative application of AM of ceramic components in architecture to explore potential bioclimatic and antipollution performative use. Lattices are defined and manufactured with density variation gradients by tracing rectilinear clay deposition toolpaths that induce porosity intended for fluid filtering and to maximize sun exposure. The design method for photocatalytic, particle filtration and evaporative cooling local characterization introduced by complex patterning elements in architectural envelope slat components processed with radiation analysis influenced design are validated by simulation and experimental testing on specimens manufactured by paste extrusion.
keywords Ceramic 3D Printing; Paste Extrusion; Photocatalytic Filter; Performative Design
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac202018205
id ijac202018205
authors Ahlquist, Sean
year 2020
title Negotiating human engagement and the fixity of computational design: Toward a performative design space for the differently-abled bodymind
source International Journal of Architectural Computing vol. 18 - no. 2, 174-193
summary Computational design affords agency: the ability to orchestrate the material, spatial, and technical architectural system. In this specific case, it occurs through enhanced, authored means to facilitate making and performance—typically driven by concerns of structural optimization, material use, and responsivity to environmental factors—of an atmospheric rather than social nature. At issue is the positioning of this particular manner of agency solely with the architect auteur. This abruptly halts—at the moment in which fabrication commences—the ability to amend, redefine, or newly introduce fundamentally transformational constituents and their interrelationships and, most importantly, to explore the possibility for extraordinary outcomes. When the architecture becomes a functional, social, and cultural entity, in the hands of the idealized abled-bodied user, agency—especially for one of an otherly body or mind—is long gone. Even an empathetic auteur may not be able to access the motivations of the differently-abled body and neuro- divergent mind, effectively locking the constraints of the design process, which creates an exclusionary system to those beyond the purview of said auteur. It can therefore be deduced that the mechanisms or authors of a conventional computational design process cannot eradicate the exclusionary reality of an architectural system. Agency is critical, yet a more expansive terminology for agent and agency is needed. The burden to conceive of capacities that will always be highly temporal, social, unpredictable, and purposefully unknown must be shifted far from the scope of the traditional directors of the architectural system. Agency, and who it is conferred upon, must function in a manner that dissolves the distinctions between the design, the action of designing, the author of design, and those subjected to it.
keywords Adaptive environments, neurodiversity, inclusion, systems thinking, computational design, disability theory, material systems, design agency
series journal
email
last changed 2020/11/02 13:34

_id acadia23_v1_136
id acadia23_v1_136
authors Alima, Natalia
year 2023
title InterspeciesForms
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 136-143.
summary The hybridization of architectural, biological and robotic agencies Situated in the field of architectural biodesign, InterspeciesForms explores a closer relationship between the fungus Pleurotus ostreatus and the designer in the creation of form. The intention of hybridizing mycelia’s agency of growth with architectural design intention is to generate novel, non-indexical crossbred designed outcomes that evolve preconceived notions of architectural form. Mycelium are threadlike fibrous root systems made up of hyphae, that form the vegetative part of a fungus (Jones 2020). Known as the hackers of the wood wide web (Simard 1997) mycelia form complex symbiotic relationships with other species that inhabit our earth. Michael Lim states “Fungi redefine resourcefulness, collaboration, resilience and symbiosis” (Lim 2022, p. 14). When wandering around the forest to connect with other species or searching for food, fungi form elaborate and entangled networks by spreading their hyphal tips. Shown in Figure 1, this living labyrinth results in the aesthetic formation of an intricate web. Due to the organisms ability to determine the most effective direction of growth, communicate with its surrounding ecosystem, and connect with other species, fungi are indeed an intelligent species with a unique aesthetic that must not be ignored. In drawing on these concepts, I refer to the organism’s ability to search for, tangle, and digest its surroundings as ‘mycelia agency of growth’. It is this specific behavioral characteristic that is the focus of this research, with which I, as the architect, set out to co-create and hybridize with.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2020_133
id ecaade2020_133
authors Andrade Zandavali, Barbara, Paul Anderson, Joshua and Patel, Chetan
year 2020
title Embodied Learning through Fabrication Aware Design
doi https://doi.org/10.52842/conf.ecaade.2020.2.145
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 145-154
summary The contemporary culture of geometry-driven design stands as consequence of an institutionalised segregation between the fields of architecture, structure and construction. In turn, digital design methods that are both material and fabrication aware from the outset create space for uncertainty and the potential for embodied learning. Following this principle, this paper summarises the outcomes of a workshop developed to investigate the contribution of fabrication aware design methods in the production of a masonry block using both analogue and digital manufacturing. Students were to develop and investigate a design, through assembly techniques and configurations orientated around manual hot wire cutting, robotic tooling and three-dimensional printing. Outcomes were manufactured and compared regarding work precision, production time, material efficiency, cost and scalability. The analysis indicated that the most accurate results yielded from the robotic tooling system, and simultaneously exhibited the most efficient use of time, while the three-dimensional printer generated the least material waste, due to the nature of additive production. Fabrication aware design and comparative analysis enabled students to make more informed decisions while the use of rapid prototyping facilitated a relationship between digitalization and materiality allowing for a space in which uncertainty and reflection could be fostered. Reinforcing that fabrication aware design methods can unify the field and provide guidance to designers over multi-lateral aspects of a project.
keywords Fabrication-Aware Design; Rapid Prototyping; Embodiment
series eCAADe
email
last changed 2022/06/07 07:54

_id cdrf2019_3
id cdrf2019_3
authors Andrej Radman
year 2020
title Machinic Phylum and Architecture
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_1
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary The chapter draws on the anti-substantivist and anti-hylomorphic legacy of two significant Deleuze and Guattari’s interlocutors: Raymond Ruyer and Gilbert Simondon. Ruyer vehemently opposed the logic of mechanicism without regressing to (active) vitalism. His masterpiece Neofinalism, yet to be fully appreciated in architectural circles, is an ode to multiplicity or ‘absolute form’. The title is to be read as a challenge to the hegemony of the step-by-step causation and partes-extra-partes mereology. According to Ruyer, non-locality is the key,not only to the question of subjectivity, but to the problem of life itself. Simondon too shies away from the metaphysics of presence. For him, the process of individuation cannot be grasped on the basis of the fully formed individual. In other words, the knowledge of individuation is the individuation of knowledge. Simondon’s highest ambition in On the Mode of Existence of Technical Objects was to integrate culture and technics (tekhne). The conviction that culture need not be antagonistic to technology is particularly pertinent to the ecologies of architecture. In the second half of the chapter, the affordance theory meets contemporary neurosciences.
series cdrf
email
last changed 2022/09/29 07:51

_id artificial_intellicence2019_15
id artificial_intellicence2019_15
authors Antoine Picon
year 2020
title What About Humans? Artificial Intelligence in Architecture
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_2
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019)
summary Artificial intelligence is about to reshape the architectural discipline. After discussing the relations between artificial intelligence and the broader question of automation in architecture, this article focuses on the future of the interaction between humans and intelligent machines. The way machines will understand architecture may be very different from the reading of humans. Since the Renaissance, the architectural discipline has defined itself as a conversation between different stakeholders, the designer, but also the clients and the artisans in charge of the realization of projects. How can this conversation be adapted to the rise of intelligent machines? Such a question is not only a matter of design effectiveness. It is inseparable from expressive and artistic issues. Just like the fascination of modernist architecture for industrialization was intimately linked to the quest for a new poetics of the discipline, our contemporary interest for artificial intelligence has to do with questions regarding the creative core of the architectural discipline.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id acadia20_66
id acadia20_66
authors Aviv, Dorit; Wang, Zherui; Meggers, Forrest; Ida, Aletheia
year 2020
title Surface Generation of Radiatively-Cooled Building Skin for Desert Climate
doi https://doi.org/10.52842/conf.acadia.2020.1.066
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 66-73.
summary A radiatively cooled translucent building skin is developed for desert climates, constructed out of pockets of high heat-capacity liquids. The liquids are contained by a wavelength-selective membrane enclosure, which is transmissive in the infrared range of electromagnetic radiation but reflective in the shortwave range, and therefore prevents overheating from solar radiation and at the same time allows for passive cooling through exposure of its thermal mass to the desert sky. To assess the relationship between the form and performance of this envelope design, we develop a feedback loop between computational simulations, analytical models, and physical tests. We conduct a series of simulations and bench-scale experiments to determine the thermal behavior of the proposed skin and its cooling potential. Several materials are considered for their thermal storage capacity. Hydrogel cast into membrane enclosures is tested in real climate conditions. Slurry phase change materials (PCM) are also considered for their additional heat storage capacity. Challenges of membrane welding patterns and nonuniform expansion of the membrane due to the weight of the enclosed liquid are examined in both digital simulations and physical experiments. A workflow is proposed between the radiation analysis based on climate data, the formfinding simulations of the elastic membrane under the liquid weight, and the thermal storage capacity of the overall skin.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_667072 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002