CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 152

_id caadria2021_399
id caadria2021_399
authors Alsalman, Osama, Erhan, Halil, Haas, Alyssa, Abuzuraiq, Ahmed M. and Zarei, Maryam
year 2021
title Design Analytics and Data-Driven Collaboration in Evaluating Alternatives
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 101-110
doi https://doi.org/10.52842/conf.caadria.2021.2.101
summary Evaluation of design ideas is an important task throughout the life cycle of design development in the AEC industry. It involves multiple stakeholders with diverse backgrounds and interests. However, there is limited computational support which through this collaboration is facilitated, in particular for projects that are complex. Current systems are either highly specialized for designers or configured for a particular purpose or design workflow overlooking other stakeholders' needs. We present our approach to motivating participatory and collaborative design decision-making on alternative solutions as early as possible in the design process. The main principle motivating our approach is giving the stakeholders the control over customizing the data presentation interfaces. We introduce our prototype system D-ART as a collection of customizable web interfaces supporting design data form and performance presentation, feedback input, design solutions comparisons, and feedback compiling and presentation. Finally, we started the evaluation of these interfaces through an expert evaluation process which generally reported positive results. Although the results are not conclusive, they hint towards the need for presenting and compiling feedback back to the designers which will be the main point of our future work.
keywords Design Analytics; Collaboration; Visualizations
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_115
id caadria2021_115
authors Chen, Qin Chuan, Lakshmi Narasimhan, Vaishnavi and Lee, Hyunsoo
year 2021
title The potential of IoT-based smart environment in reaction to COVID-19 pandemic
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 709-718
doi https://doi.org/10.52842/conf.caadria.2021.2.709
summary COVID-19 was first reported in late December 2019 and quickly become a global health crisis. In the COVID-19 pandemic context, the dense and open characteristics make the public spaces a potential virus transmission hotspot. Therefore, it is extremely critical to adopt a more advanced and effective method in public environments to slow down its spread until a vaccine is widely used. A smart environment in the form of IoT, also known as the architecture of IoT, consists of three layers: perception layer, network layer, and application layer. A smart environment allows data and activities that happen in this environment to be collected, processed, and shared in real-time through various sensors. It can be introduced for early detection, tracking, and monitoring of potential confirmed cases. The smart environment is considered one of the most promising approaches to face and tackle the current scenario. However, research focusing on the potential of IoT smart environment in reaction to COVID-19 is still meager. Therefore, this paper identifies the smart environments potential based on the concept of IoT architectures three layers and further discusses how IoT can be introduced in public spaces to help battle the pandemic.
keywords Internet of Things; Smart environment; COVID-19
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_008
id caadria2021_008
authors Chung, Minyoung and Lee, Hyunsoo
year 2021
title Using Virtual Filters to Measure how the Elderly Perceive Color
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 325-334
doi https://doi.org/10.52842/conf.caadria.2021.2.325
summary This study was conducted to test the effectiveness of a virtual filter that digitally compensates for age-related changes in color perception. Many elderly people experience declining color perception. Medical studies have been conducted on how elderly peoples lenses affect their color perception. However, digital practical method for improving elderly peoples color perception need to be developed. Subway map is a good example of many elders daily experience. To adapt virtual filters to subway maps colors, standard short-wavelength colors, namely purple and green, were selected for variance independence (VI) because colors with short wavelengths of 400-600 nm on visible light are difficult for elderly people to perceive. Standard color VIs of subway lines and VI transferred to artificial lenses were measured with a spectrophotometer. CIE LAB and RGB; Color value on virtual filter (VD) was analyzed from VI. This virtual filter was developed based on artificial lenses using Dynamo. A visual programming algorithm was developed to adjust the color of a virtual filter through an interface. The results showed that virtual filters can be used to help elderly people detect short-wavelength colors. Therefore, virtual filters should be incorporated into lenses for use by the elderly.
keywords Virtual filter; Elderly people's perception; Colors on subway map
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_130
id caadria2021_130
authors Han, Yoojin and Lee, Hyunsoo
year 2021
title Exploring the Key Attributes of Lifestyle Hotels: A Content Analysis of User-Created Content on Instagram
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 71-80
doi https://doi.org/10.52842/conf.caadria.2021.1.071
summary This study aims to investigate the key attributes of lifestyle hotels by analyzing user-created content on Instagram, an image-based social network service. In an era of uncertainty in the tourism and hospitality industry, it is inevitable that hotels must create a competitive identity. However, even with the significant growth of the lifestyle hotel segment, the concept of a lifestyle hotel is still vague. Therefore, to explore how to define, perceive, and interpret lifestyle hotels and to suggest their crucial attributes, this paper examines user-created content on Instagram. The data from 20,886 Instagram posts related to lifestyle hotels, including 2,209 locations, 43,586 hashtags, and 20,866 images, were analyzed using Vision AI, a social network analysis method and computer vision technology. The results of this study demonstrated that lifestyle hotels are perceived as design-focused branded hotels that represent the urban lifestyle and share both vacation and urban activities. Furthermore, the results reflected one of the latest hospitality trends-a holiday in an urban setting in addition to the primary purpose of traveling. Finally, this research suggests broader uses of big data and deep learning for analyzing how a place is consumed in a geospatial context.
keywords Lifestyle Hotel; Hospitality Experiences; User-Created Content; Social Network Analysis; Vision AI
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2021_438
id caadria2021_438
authors Hofmeyer, Herm, De Goede, Thijs and Boonstra, Sjonnie
year 2021
title Co-evolutionary Spatial-Structural Building Design Optimisation including Facade Openings
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 431-440
doi https://doi.org/10.52842/conf.caadria.2021.1.431
summary Within co-evolutionary building design simulations, a spatial design can be automatically transformed into a structural design, and its structural performance can lead to modifications of the spatial design, after which a new cycle starts. This paper presents two procedures to include facade openings in these simulations, to allow for future simulations that include lighting. The first procedure reassigns a fixed pattern of facade openings to the spatial design each cycle, whereas the second procedure only assigns a pattern at the start, and modified spaces inherit their openings. For structural peformance, it is concluded that deterministic vertical opening patterns, with a low facade opening ratio, lead to a reduction of the number of stories, and consequently optimise the structural design. Also, it is shown that the first procedure maintains facade opening ratios during simulations, whereas the second procedure leads to decreasing openness, and more unconnected spaces. As such the first procedure is considered for an upcoming project, where spatial-structural-thermal-lighting building optimisation is investigated, including non-rectangular spatial designs.
keywords Spatial-Structural Optimisation; Co-evolutionary Design; Structural Design; Facade Openings
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2021_210
id caadria2021_210
authors Hsiao, Chi-Fu, Lee, Ching-Han, Chun-Yen, Chen and Teng-Wen, Chang
year 2021
title A Distributed Agents Approach for Design and Fabricating Process Management among Prototyping Practice Environment
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 593-601
doi https://doi.org/10.52842/conf.caadria.2021.1.593
summary This paper develops a design and fabrication process management platform for prototyping practice environments using a robot operating system (ROS) framework, which we refer to as a fabricating operating service (FOS). The FOS executes a sequence of fabrication workflow that goes from materials handling, positioning, fabrication simulation, executing process to parts assembling. Each work phase is considered a different activity in the execution phase and a compact printed circuit board node to send and receive physical data. These nodes are registered onto an FOS cloud master, which distributes the node-to-node communication and links up the entire sequence of the workflow map. We propose FOS given that its loose, coupled, and distributed computation framework allows the fabrication team to visualize and record data using sharable ROS package structures. The FOS provides the advantage of easily creating additional tools, configurations, and automated scripts, and it increases the fabrication capabilities by simplifying and providing solutions for future robotic-aided fabrication development.
keywords ROS; prototype; node; fabrication workflow;
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2021_243
id caadria2021_243
authors Stojanovic, Djordje and Vujovic, Milica
year 2021
title Contactless and context-aware decision making for automated building access systems
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 193-202
doi https://doi.org/10.52842/conf.caadria.2021.2.193
summary In the current context of the COVID-19 pandemic, contactless solutions are becoming increasingly important to making buildings more resilient to the spread of infectious diseases in complementing social distancing and disinfection procedures for disease prevention. The presented study focuses on contactless technology and its role beyond automated interaction with the built environment by examining how it expedited space use and could improve compliance with sanitary norms. We introduce a conceptual framework for the intelligent operation of automated doors in an educational facility, enabled by the network of sensory devices and the application of computational techniques. Our research indicates how versatile data gathered by RFID systems, in conjunction with data extracted from occupancy schedules and sanitary protocols, can be used to enable the intelligent and context-aware application of disease prevention measures. In conclusion, we discuss the benefits of the proposed concept and its role beyond the need for social distancing after the pandemic.
keywords Human-Building Interaction; Interactive Environments; Responsive Environments; Occupancy Scheduling; Occupational Density
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_231
id caadria2021_231
authors Wong, Kwan Ki Calvin and van Ameijde, Jeroen
year 2021
title In-Between Spaces: Data-driven Analysis and Generative Design for Public Housing Estate Layouts
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 397-406
doi https://doi.org/10.52842/conf.caadria.2021.2.397
summary As Hong Kong constructs increasingly high-density, high-rise public housing estates to increase land use efficiency, public in-between spaces are more constrained, which impacts the quality of social relations, movements and daily practices of residents (Shelton et al. 2011; Tang et al. 2019). Current planning practices are focused on the achievement of quantitative performance measures, rather than qualitative design considerations that support residents experiences and community interaction. This paper presents a new methodology that combines urban analysis and generative design for the regeneration of social housing estates, based on the spatial and social qualities of their in-between spaces.
keywords Social Housing; Public Open Space; Generative Design; Urban Planning
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2021_405
id caadria2021_405
authors Zarei, Maryam, Erhan, Halil, Abuzuraiq, Ahmed M., Alsalman, Osama and Haas, Alyssa
year 2021
title Design and Development of Interactive Systems for Integration of Comparative Visual Analytics in Design Workflow
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 121-130
doi https://doi.org/10.52842/conf.caadria.2021.2.121
summary In architectural design, data-driven processes are increasingly utilized in creating and selecting design alternatives. Multiple design-aid systems that support such processes exist. Still, these systems dominantly support parametric modelling only or lack sufficient support for organizing, scanning and comparing multiple alternatives in the process of their creation while considering both their forms and performance data. In this paper, we argue that (a) evaluating and selecting potential alternatives must take place in the same context they are created and explored, (b) interactive data visualizations can provide real-time feedback about various aspects of design alternatives, and they should be incorporated as early in the design process as possible, and (c) design environment must enable comparing design alternatives as an integral part of the design workflow. We call our approach 'comparative design analytics,' which aims to identify, develop, and validate practical key features of visualization tools for assisting designers in analyzing and comparing multiple solutions with their data. We present D-CAT as a visualization prototype tool integrated with an existing CAD application. D-CAT acts as a platform for generating knowledge about using interactive data visualization for comparing design alternatives. Our goal is to transfer the findings from evaluating this interface to developing practical applications for real-world use.
keywords Comparative Design Analytics; Interactive System Development; Design Data Visualization; Design Workflow Augmentation; Creativity Support Tool
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2021_083
id caadria2021_083
authors Zhu, Guanqi, Ou, Ya, Bao, Dingwen and Luo, Dan
year 2021
title Robotic weaving of customizable FRP formworks for large-scale optimized structure
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 573-582
doi https://doi.org/10.52842/conf.caadria.2021.1.573
summary This research presents a novel method of robotic fabrication for customizable fiber-reinforced polymer (FRP) tubular formworks, which also function as reinforcements for large-scale structural components. This process is achieved by the spatial weaving of FRP fabric driven by a robotic arm, and calibrated with the fast-cure resin which is applied on the fabric and cures during the weaving process so the fabricated structure is self-supporting and the structure is formed in an additive manner. With this method, structural members with changing sections can be customized and fabricated rapidly with off-the-shelf materials, following a system of structural reinforcement that has been widely adopted in the construction industry and promotes new applications of construction robotics.
keywords robotic fabrication; fiber reinforced polymer; structural topology optimization
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
doi https://doi.org/10.52842/conf.caadria.2021.1
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
doi https://doi.org/10.52842/conf.caadria.2021.2
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
doi https://doi.org/10.52842/conf.caadria.2021.1.743
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_006
id caadria2021_006
authors Agirachman, Fauzan Alfi and Shinozaki, Michihiko
year 2021
title VRDR - An Attempt to Evaluate BIM-based Design Studio Outcome Through Virtual Reality
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 223-232
doi https://doi.org/10.52842/conf.caadria.2021.2.223
summary During the COVID-19 pandemic situation, educational institutions were forced to conduct all academic activities in distance learning formats, including the architecture program. This act barred interaction between students and supervisors only through their computers screen. Therefore, in this study, we explored an opportunity to utilize virtual reality (VR) technology to help students understand and evaluate design outcomes from an architectural design studio course in a virtual environment setting. The design evaluation process is focused on building affordance and user accessibility aspect based on the design objectives that students must achieve. As a result, we developed a game-engine based VR system called VRDR for evaluating design studio outcomes modeled as Building Information Modeling (BIM) models.
keywords virtual reality; building information modeling; building affordance; user accessibility; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_273
id caadria2021_273
authors Allam, Sammar and Alaçam, Sema
year 2021
title A Comparative Analysis of the Tool-Based versus Material-Based Fabrication Pedagogy in the Context of Digital Craft
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 11-20
doi https://doi.org/10.52842/conf.caadria.2021.2.011
summary This study presents the comparative analysis of two undergraduate courses which focus on introducing digital fabrication to design students. The duration of the compared courses are 5 weeks and 7 weeks respectively. The study employs action research methodology, while the theoretical lectures, weekly exercises, materials, fabrication tools and techniques, and students' outcomes were used as data sources. Particularly the material-based pedagogy and tool-based pedagogy of the compared courses are evaluated in relation with the tools, materials and techniques. The outcomes of the study is expected to provide insights for instructors and design students in the context of digital craft.
keywords Digital Craft; Fabrication Techniques; Design Pedagogy; Tool-Based Fabrication; Material-Based Fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_216
id caadria2021_216
authors Aman, Jayedi, Tabassum, Nusrat, Hopfenblatt, James, Kim, Jong Bum and Haque, MD Obidul
year 2021
title Optimizing container housing units for informal settlements - A parametric simulation & visualization workflow for architectural resilience
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 51-60
doi https://doi.org/10.52842/conf.caadria.2021.1.051
summary In rapidly growing cities like Dhaka, Bangladesh, sustainable housing in urban wetlands and slums present a challenge to more affordable and livable cities. The Container Housing System (CHS) is among the latest methods of affordable, modular housing quickly gaining acceptance among local stakeholders in Bangladesh. Even though container houses made of heat-conducting materials significantly impact overall energy consumption, there is little research on the overall environmental impact of CHS. Therefore, this study aims to investigate the performance of CHS in the climatic context of the Korail slum in Dhaka. The paper proposes a building envelope optimization and visualization workflow utilizing parametric cluster simulation modeling, multi-objective optimization (MOO) algorithms, and virtual reality (VR) as an immersive visualization technique. First, local housing and courtyard patterns were used to develop hypothetical housing clusters. Next, the CHS design variables were chosen to conduct the MOO analysis to measure Useful Daylight Illuminance and Energy Use Intensity. Finally, the prototype was integrated into a parametric VR environment to enable local stakeholders to walk through the clusters with the goal of generating feedback. This study shows that the proposed method can be implemented by architects and planners in the early design process to help improve the stakeholders understanding of CHS and its impact on the environment. It further elaborates on the implementation results, challenges, limitations of the parametric framework, and future work needed.
keywords Multi-objective Optimization; Building Energy Use; CHS; Informal Settlements; Parametric VR
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_f02
id caadria2021_f02
authors Anastasia Globa, Jeroen van Ameijde, Adam Fingrut, Nayeon Kim and Sky Lo Tian Tian
year 2021
title CAADRIA 2021 (Front Matter Volume 2)
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. i-xxxiv
summary Front Matter
keywords CAADRIA; Front Matter
series CAADRIA
email
last changed 2021/03/29 09:17

_id caadria2021_f01
id caadria2021_f01
authors Anastasia Globa, Jeroen van Ameijde, Adam Fingrut, Nayeon Kim and Sky Lo Tian Tian
year 2021
title CAADRIA 2021 (Front Matter Volume 1)
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. i-xxxiv
summary Front Matter
keywords CAADRIA; Front Matter
series CAADRIA
email
last changed 2021/03/29 09:17

_id caadria2021_233
id caadria2021_233
authors Ascoli, Raphaël
year 2021
title Augmenting computational design agency in emerging economies
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 639-648
doi https://doi.org/10.52842/conf.caadria.2021.2.639
summary This /practice-based design research/ investigates the possibility of computational design to increase agency and impact in emerging economies through real-world projects. By cultivating a new kind of relationship to issues in development and local untapped resources, they inspire for more public engagement and resource-based conversations within a spatial framework. The topics that were addressed in this research are the democratization of data and affordability of construction. These two on-going early-stage initiatives have used computational design tools at specific areas in the projects development, therefore optimizing the parts where low-tech tools werent sufficient. This demand driven design process explores ways in which different levels of technology can augment each other.
keywords space; resource; housing; myanmar; optimization
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_291
id caadria2021_291
authors Bansal, Medha and Erdine, Elif
year 2021
title Bio-Mineralisation And In-Situ Fabrication Of In-Dune Spaces: Case Study Of Thar Desert
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 493-502
doi https://doi.org/10.52842/conf.caadria.2021.1.493
summary Desertification has made large productive landscapes in the South-west Thar desert redundant, subjected people to migration and induced a constant influx of sand into the region (Singhvi and Amal, 2014). The abundance of sand creates an opportunity to adopt an existing technique, Bio-mineralisation, to develop a sand based composite material which, when treated with a construction binder like sodium alginate, can be used for engineering purposes. The paper sets a theoretical framework to develop a fabrication mechanism with microbial-grout injections and propose the development of in-dune/underground assembly of habitable spaces. Each of the sub-components of material system, fabrication mechanism and In-dune structures are detailed, and evaluated to devise a hierarchy between them. Their interdependencies together inform design strategies, a phasing plan and global time scale for overall terrain transformation.
keywords Bio-mineralisation; Bio-grouting; In-dune fabrication; Tool path algorithms; Micro-climate analysis
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_536512 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002