CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 8 of 8

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_069
id ascaad2021_069
authors Cheddadi, Aqil; Kensuke Hotta, Yasushi Ikeda
year 2021
title Exploring the Self-Organizing Structure of the Moroccan Medina: A Simulation Model for Generating Urban Form
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 672-685
summary This research explores the use of generative design and computational simulations in the exploration of urban compositions based on traditional urban forms from North Africa. Upon the examination of these urban settlements, we discuss the relationship between traditional urban form and generative urbanism theory. We investigate several factors that allow these self-generated urban tissues to be highly adaptive to social, spatial, and environmental change. Following this, we formulate guidelines to reinterpret some of the characteristics of these urban forms. Built on these features, the simulation seeks to explore the generation of abstract urban forms and their optimization. In this regard, this experiment utilizes 3D and parametric design tools (Rhinoceros 3D and Grasshopper) to define a generative urban simulation and optimization model. It explores the use of algorithmic design methodology in the definition and optimization of the generated urban form. For this purpose, grid-based operations with base modules are used in conjunction with introverted urban blocks. We employ evolutionary algorithms and Pareto front methodology to visualize and rank a multitude of optimized results that are evaluated using three different and conflicting design objectives: sun exposure, physical accessibility, and urban density. The results are ranked and analyzed by comparing the outcomes of these different objective functions. The result of this study shows that it is possible to allow a degree of diversification of a myriad of urban configurations with a generative form-finding algorithm while still maintaining a rather commendable adaptability to various design constraints in the case of high-density settings. In this research, it is anticipated that an algorithmic design model is a fitting contemporary solution that can simulate the philosophy of a design made without a designer and offer a wide range of objective-based spatial solutions. It sets the stage for a discussion about the relevance of reinterpreting traditional urban forms from north Africa by designing a generative model that allows for self-organization.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_054
id ascaad2021_054
authors Kontovourkis, Odysseas; Andreas Konstantinou, Nikos Kyrizi, Panagiota Tziourrou,
year 2021
title Built-In Immersive VR Technology for Decision-Making in Design and Simulation of a Flexible Shading Device
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 190-200
summary This paper discusses the potential offered by Virtual Reality (VR) and accompanied gesture-based devices as tools for architectural design and simulation. This is done by outlining a workflow and by demonstrating an experimental study for the development of an interactive, flexible and parametric shading device consisting of bending-active wooden strips. More specifically, the project focuses on the relationship between physical inputs acquisition and virtual experience of two users in space. Through the use of Kinect and VR headset, the first user is responsible to check and control the shading system regarding the shape and sun direction. The aim is to create configurations that serves his/her shading needs by moving his/her hand in order to hide the sun in a game like procedure until satisfactory shading is acquired. The second user, through the use of a leap motion sensor and a projection screen, is able to check and control the efficiency of structure in terms of bending behavior and environmental impact, also in a loop of possibilities. Using the thump and pointer fingers he/she controls the bending behavior by watching a screen that shows in different colours the bending factor of each element. At the same time, the distance between his/her hands controls the number of elements in order to achieve the optimal rate between material consumption and shading. The two users can intervene sequentially or concurrently during the process. A series of investigations related to shading rate and bending behavior as well as minimum material consumption leading to lower environmental impact are conducted. This attempts to offer useful conclusions as regard the potential application of immersive VR technology as mechanism for decision-making in architecture and simulation but also in the fabrication of the suggested shading device.
series ASCAAD
email
last changed 2021/08/09 13:11

_id caadria2021_194
id caadria2021_194
authors Sun, Chengyu, Li, MengTing and Jiang, Hanchen
year 2021
title Developing an Automatic Code Checking System for the Urban Planning Bureau of Huangpu District in Shanghai
doi https://doi.org/10.52842/conf.caadria.2021.1.291
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 291-300
summary As Chinese cities entering a so-called organic renewal era, building projects runs with much more constraints from high-density and high-rise surroundings. Such a situation makes the technical review in any urban planning bureau time-consuming and error-prone, which conflicts with the developers profits and citizens rights. This study introduces a preliminary system being developed for the planning bureau of Huangpu District, Shanghai. It has covered 21 code items among 44 computational ones of the local planning codes last year, which automatically generates technical reviews upon developers submissions. Due to the feasible level of BIM application in domestic projects, a set of strategic approaches, such as the standardization of CAD drawings and the reconstruction of an internal building information model, are adopted rather than developing the system on any BIM platform directly. Two examples of technical reviews about distance-checking between buildings and length-checking of facades are demonstrated, in which officers reached confidential judgments in seconds rather than several days conventionally.
keywords Planning Constraints; Code Checking; 3D Reconstruction; Design Automation; Building Information Model
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_042
id caadria2021_042
authors Sun, Chengyu, Lin, Yinshan and Li, Shuyang
year 2021
title Automatic Generation of Signboards in Large-Scale Transportation Building Driven by Passengers' Paths
doi https://doi.org/10.52842/conf.caadria.2021.1.011
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 11-20
summary The signage design of any large-scale transportation building is vital to its passengers wayfinding experiences. Firstly, a set of passengers paths should be re-designed by signage designers according to the latest requirements, which always deviates from the initial ones in large-scale projects or inevitably updates during a long-term running. Afterwards, the path design has to be transformed into the layout and content of signboards manually. It is a time-consuming and error-prone process. This study introduces a human-computer hybrid workflow keeping the flexible path design in the hands of designers and leaving the following procedures to an algorithm, which automatically generates signboard contents ready for construction. It is proved efficient with more than 3000 signboards in the project of PVG Airport, Shanghai. Furthermore, the designer got an opportunity to optimize his path design through various alternatives, which impossible traditionally.
keywords Design Automation; Human-Computer Hybrid; Signboard; Passenger Path; Transportation Building
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_406
id caadria2021_406
authors Sun, Maoran, Sun, Pengcheng, Dong, Yuebin and Lopez, Jose Luis Garcia del Castillo
year 2021
title Mass Production - Towards Multidimensional,Real-time Feedback in Early Stages of Urban Design Processes
doi https://doi.org/10.52842/conf.caadria.2021.2.649
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 649-658
summary Urban design, especially in its early stages, focuses mainly on massing studies rather than architectural detail or engineering. Traditional urban design workflows involve a mix of sketching and modeling. However, the back and forth between the sketching-modeling loop is typically fairly time-consuming, resulting in a reduced capacity to iterate efficiently over design concepts, even in their digital form. In this paper, we present a workflow for producing digital massing tests from hand-drawn sketches. The goal of Mass Production is to help quick iteration on volumetric design enhanced by real-time feedback on quantitative and qualitative parameters of the model, thus helping designers make better informed decisions on early stages of urban design processes. The architecture of the proposed workflow consists of three main elements: a tangible user interface (UI) for designer input, a real-time dashboard of diagrams and models for massing analysis, and an augmented reality (AR) environment for enhanced feedback on design form and shaping. In this research, Mass Production is tested in different design scenarios, a discussion about the future and its impact is presented, including emerging technology while keeping traditional workflows.
keywords Urban Design; Massing Study; Augmented Reality
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2021_252
id cdrf2021_252
authors Chengyu Sun, Shuyang Li , Yinshan Lin, and Weilin Hu
year 2021
title From Visual Behavior to Signage Design: A Wayfinding Experiment with Eye-Tracking in Satellite Terminal of PVG Airport
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_24
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Passengers principally rely on signage to making wayfinding decisions in transportation buildings. Most existing research focuses on the analysis of the wayfinding trajectory, but there is less attention on the process of how passengers make the wayfinding decision. So, it is hard to accurately locate the causes of the wrong wayfinding decision. Taking the Satellite Terminal of Shanghai Pudong International Airport (PVG Airport) as an example, we adopted the eye-tracking technology and recorded the eye-tracking data of passengers observing the signage and making wayfinding decisions. Then, we compared and analyzed the data, presenting it by data visualization. This study found the causes of passengers making wrong wayfinding decisions and the visual behavior of wayfinding: the reconfirmation behavior, the priority of attention, and the clockwise observation. Finally, corresponding suggestions for signage design optimization are put forward regarding some wayfinding decision points. As a result, the optimized signage system in the satellite terminal is welcomed by the passengers two months later according to monthly questionnaires.
series cdrf
last changed 2022/09/29 07:53

_id sigradi2021_208
id sigradi2021_208
authors Eloah, Adriane, Queiroz, Natália and Coelho, Leonardo
year 2021
title Parametric Urbanism: Multi-Criteria Optimization for a Sustainable Neighborhood in Sao José Dos Campos
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 351–362
summary Based on the concepts of Sustainable Urbanism and performance-based design, this work proposes the development of a neighborhood in the city of Sao José dos Campos (SJC), Sao Paulo-Brazil. The performance-based design method was used through parametric algorithmic tools - such as Grasshopper - for construction, analysis and the urban design multicriteria optimization. Five optimization functions were used: walkability, sunset view, radiation in hot periods, minimum hours of sun exposition and maximum number of floors. The use of optimization software accommodates the numerous conflicting requirements of the model. The results obtained are a systematization of the process and a system that allows various urban solutions based on numerical performance criteria. The selected solutions achieved walkability indicators greater than 80%.
keywords Urbanismo paramétrico, Urbanismo Sustentável, otimizaçao, sustentabilidade, Performance-based design
series SIGraDi
email
last changed 2022/05/23 12:10

No more hits.

HOMELOGIN (you are user _anon_860405 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002