CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 5 of 5

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
doi https://doi.org/10.52842/conf.acadia.2021.328
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_266
id caadria2021_266
authors Chen, Yao, Lo, Tiantian, Guo, Xiangmin, Du, Ruijie and Hu, Xinchuang
year 2021
title Interactive Virtual Sand Table - A theoretical review on its application towards Urban Planning
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 629-638
doi https://doi.org/10.52842/conf.caadria.2021.2.629
summary The sand table is a tool of expression of urban planning.With the development of computer science and technology,virtual reality technology is playing an important role in many aspects of urban planning and design,as well as,the virtual sand table.This article analyzes the limitations of the current urban planning sand table from designers and other participants perspectives. It analyses the advantages of applying interactive technology in a sand table for urban planning and proposes using such interactive technology in the future. This paper will also investigate three aspects of interactions: human-computer interaction technology, collaborative interaction technology, remote visual interaction technology. The application of interactive technology on the virtual sand table, on the one hand, can carry out a multi-angle forward-looking analysis of the problems of urban construction and improve the efficiency of planning and approval, and development; on the other hand, it can increase public participation in urban planning and design.
keywords interactive technology; urban planning; urban planning sand table; electronic sand table
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia21_354
id acadia21_354
authors Liu, Yulun; Lu, Yao; Akbarzadeh, Masoud
year 2021
title Kerf Bending and Zipper-in Spatial Timber Tectonics
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 354-361.
doi https://doi.org/10.52842/conf.acadia.2021.354
summary Space frames are widely used in spatial constructions as they are lightweight, rigid, and efficient. However, when it comes to the complex and irregular spaces frames, they can be difficult to fabricate because of the uniqueness of the nodes and bars. This paper presents a novel timber space frame system that can be easily manufactured using 3-axis CNC machines, and therefore increase the ease of the design and construction of complex space frames. The form-finding of the space frame is achieved with the help of polyhedral graphic statics (PGS), and resulted form has inherent planarity which can be harnessed in the materialization of the structure. Inspired by the traditional wood tectonics kerf bending and zippers are applied when devising the connection details. The design approach and computational process of this system are described, and a test fabrication of a single node is made via 3-axis CNC milling and both physically and numerically tested. The structural performance shows its potentials for applications in large-scale spatial structures.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_075
id caadria2021_075
authors Yang, Chunxia, Lyu, Chengzhe, Yao, Ziying and Liu, Mengxuan
year 2021
title Study on the Differences of Day and Night Behavior in Urban Waterfront Public Space Based on Multi-agent Behavior Simulation
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 559-568
doi https://doi.org/10.52842/conf.caadria.2021.2.559
summary In the twenty-four hour city era, how to optimize public spaces based on night behavior demands to promote full-time use has become a significant issue of urban design. Taking Shanghai North Bund as an example, the study collects data through site survey and questionnaire including environment elements, users attribute and behaviors. Next, the study sets up the simulation environment and translate the interaction of space and behavior into model language. Then, by setting up agent particles, running and fitting, the study obtains an ideal model. Finally, through sub-simulation and analysis, the study quantitatively explores the interaction mechanism between the physical environment and behavior from three levels of different spaces, different groups of people and different light conditions. The study finds that the differences of day and night behavior are produced under the combined effect of changes in attractiveness of environmental elements and changes in users demands and preferences. Compared with adults, the behaviors of elderly people and children show more obvious differences between day and night, and are more susceptible to space lighting, ground conditions and operating hours of facilities. Furthermore, the same kind of environment element will further affect users behavior in the night under different light conditions.
keywords Self-Organization Behavior; Behavior Differences; Day and Night; Multi-Agent Behavior Simulation; Waterfront Public Space
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2021_156
id caadria2021_156
authors Yao, Jiawei, Huang, Chenyu, Peng, Xi and Yuan, Philip F.
year 2021
title Generative design method of building group - Based on generative adversarial network and genetic algorithm
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 61-70
doi https://doi.org/10.52842/conf.caadria.2021.1.061
summary From parametric shape finding to digital shape generation, the discussion of generative design has never stopped in recent years. As an important watershed of building intelligence, generative design method has dual significance of scheme selection and building performance optimization in digital architectural design workflow. In this paper, the generative design method for the layout of residential buildings is studied. The pix2pix network, a kind of generative adversarial network, is used to learn the layout method of residential buildings in Shanghai. The generated layout uses Octopus, a genetic algorithm tool of Grasshopper, to generate the volume and optimize the sunshine hours and other performance parameters. In the generation process, different training sample sets and Pareto genetic algorithm optimization are used to realize the control of building density, plot ratio and height limit. This method can meet the real application scenarios in the early stage of architectural design to a certain extent, and has more expansibility, providing ideas for the generative design method of building group.
keywords generative design method; generative adversarial network; genetic algorithm; sunshine optimization
series CAADRIA
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_225639 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002