CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ascaad2021_008
id ascaad2021_008
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Assessing the Effectivity of Additive Manufacturing Techniques for the Production of Building Components: Implementing Innovation for Housing Construction in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 214-226
summary This paper examines the suitability of existing robotic technologies and large-scale 3D printing techniques for the fabrication of three-dimensional printed building components to be applied in the Saudi housing construction industry. The paper assesses a series of cases based on the applications for 3D-printing cement-based materials in construction. In particular, we investigate five different additive manufacturing techniques and evaluate their performance in terms of their flexibility/mechanism, control/navigation, calibration/operation system, fabrication suitability (in-situ or off-site), size of printed components, printing speed. The findings include in a matrix chart, where the advantages and disadvantages of each technique become evident. The paper further evaluates the suitability of each technique in relation to the particular climatical and socio-political context of Saudi Arabia, applicable to other construction industries with similar conditions.
series ASCAAD
email
last changed 2021/08/09 13:11

_id caadria2021_213
id caadria2021_213
authors Oghazian, Farzaneh and Vazquez, Elena
year 2021
title A Multi-Scale Workflow for Designing with New Materials in Architecture: Case Studies across Materials and Scales - Case studies across materials and scales
doi https://doi.org/10.52842/conf.caadria.2021.1.533
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 533-542
summary In this paper, we present a workflow developed for designing with and scaling-up new materials in architecture through an iterative cycle of materialization and testing. The framework establishes a connection between design requirements and form, taking advantage of different scales in new materials known as micro, meso, and macroscale in the process of design/manufacture. Different scales when dealing with material systems-especially in those that possess some level of uncertainty in their behavior from the formation process-make it challenging to deal with the different material variables controlled at each scale. This paper presents a brief review of existing design workflows centered on material properties. We then discuss case studies and argue for a multi-scale approach for design. Finally, we present the workflow. By implementing the workflow on two case studies, we answer how we can include material scales and their embedded properties as the central part of the design/manufacture process to aid in implementing new materials in architecture. The case studies are a responsive skin system and a free-standing tensile structure incorporating 3D printed wood filament and knitted yarn as the primary material.
keywords material computation; material-based design; wood 3D printing; knitting; multi-scale workflow
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia21_308
id acadia21_308
authors Rossi, Gabriella; Chiujdea, Ruxandra; Colmo, Claudia; El Alami, Chada; Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette
year 2021
title A Material Monitoring Framework
doi https://doi.org/10.52842/conf.acadia.2021.308
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 308-317.
summary Through 3d printing, cellulose-based biopolymers undergo a two-staged hybrid fabrication process, where initial rapid forming is followed by a slower secondary stage of curing. During this curing large quantities of water are evaporated from the material which results in anisotropic deformations. In order to harness the potential of 3d printing biopolymers for architectural applications, it is necessary to understand this extended timeline of material activity and its implications on critical architectural factors related to overall element shrinkage, positional change of joints, and overall assembly tolerance. This paper presents a flexible multi-modal sensing framework for the understanding of complex material behavior of 3d printed cellulose biopolymers during their transient curing process.

We report on the building of a Sensor Rig, that interfaces multiple aspects of the curing of our cellulose-slurry print experiments, using a mix of image-based, marker-based, and pin-based protocols for data collection. Our method uses timestamps as a common parameter to interface various modes of curing monitoring through multi-dimensional time slices. In this way, we are able to uncover underlying correlations and affects between the different phenomena occuring during curing. We report on the developed data pipelines enabling the Monitoring Framework and its associated software and hardware implementation. Through graphical Exploratory Data Analysis (EDA) of 3 print experiments, we demonstrate that geometry is the main driver for behavior control. This finding is key to future architectural-scale explorations.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
doi https://doi.org/10.52842/conf.caadria.2021.1.743
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2021_007
id ascaad2021_007
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Developing a Design Framework for the 3D Printing Production of Concrete Building Components: A Case Study on Column Optimization for Efficient Housing Solutions in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 713-726
summary This paper is examining the development of a design and fabrication framework aiming to increase the efficiency of the construction of concrete building components by introducing 3D concrete printing in the context of Saudi Arabia. In particular, we will present an algorithmic process focusing on the design and fabrication of a typical, mass customised, single-family house, which incorporates parametric modelling, topology optimisation, finite element (FE) analysis and robotic 3D printing techniques. We will test and verify our framework by designing and fabricating a loadbearing concrete column with structural and material properties defined by the Saudi Building Code of Construction. Our findings are highlighting the advantages and challenges of the proposed file-to-factory framework in comparison to the conventional construction methods currently applied in Saudi Arabia, or other similar sociopolitical contexts. By comparing the material usage in both conventional and optimised columns, the results have shown that material consumption has been reduced by 25%, the required labour in the construction site has been mitigated by 28 and the duration time has been reduced by 80% without the need for formwork.
series ASCAAD
email
last changed 2021/08/09 13:11

_id sigradi2021_280
id sigradi2021_280
authors Banda, Pablo, García-Alvarado, Rodrigo and Munoz-Sanguinetti, Claudia
year 2021
title Architectural Digital Design for 3D Printing Housing: Search for 3D Printing in Construction Trends for a Design Methodology
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1409–1421
summary This paper proposes the development of a methodology for the digital generation of valid 3D-printed houses designs and fabrication programming, in the search for an emerging architectural language of this technology. The aim is to develop a transparent, generic and variable modeling and management process, based on some parametric patterns for 3D printing, architectural and construction design knowledge. That serves as an outline or insight of what can be designing architectural 3d-printed forms in the Construction 4.0 era. Preliminary results, discussion and further work are presented.
keywords 3D Printed Buildings, Generative Design, Parametric Design, Digital Fabrication, Housing
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_005
id caadria2021_005
authors Bedarf, Patrick, Martinez Schulte, Dinorah, Şenol, Ayça, Jeoffroy, Etienne and Dillenburger, Benjamin
year 2021
title Robotic 3D Printing of Mineral Foam for a Lightweight Composite Facade Shading Panel
doi https://doi.org/10.52842/conf.caadria.2021.1.603
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 603-612
summary This paper presents the design and fabrication of a lightweight composite facade shading panel using 3D printing (3DP) of mineral foams. Albeit their important role in industrial construction practice as insulators and lightweight materials, only little research has been conducted to use foams in 3DP. However, the recent development of highly porous mineral foams that are very suitable for extrusion printing opens a new chapter for development of geometrically complex lightweight building components with efficient formwork-free additive manufacturing processes. The work documented in this paper was based on preliminary material and fabrication development of a larger research endeavor and systematically explored designs for small interlocking foam modules. Furthermore, the robotic 3D Printing setup and subsequent processing parameters were tested in detail. Through extensive prototyping, the design space of a final demonstrator shading panel was mapped and refined. The design and fabrication process is documented and shows the potential of the novel material system in combination with fiber-reinforced ultra-high performance concrete (UHPC). The resulting composite shading panel highlights the benefits of using mineral foam 3DP to fabricate freeform stay-in-place formwork for lightweight facade applications. Furthermore, this paper discusses the challenges and limitations encountered during the project and gives a conclusive outlook for future research.
keywords robotic 3d-printing; mineral foam; lightweight construction; concrete formwork; facade shading panel
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
doi https://doi.org/10.52842/conf.acadia.2021.318
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_400
id acadia21_400
authors Bruce, Mackenzie; Clune, Gabrielle; Xie, Ruxin; Mozaffari, Salma; Adel, Arash
year 2021
title Cocoon: 3D Printed Clay Formwork for Concrete Casting
doi https://doi.org/10.52842/conf.acadia.2021.400
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 400-409.
summary Concrete, a material widely used in the construction industry today for its low cost and considerable strength as a composite building material, allows designers to work with nearly any form imaginable; if the technology to build the formwork is possible. By combining two historic and widely used materials, clay and concrete, our proposed novel process, Cocoon, integrates robotic clay three-dimensional (3D) printing as the primary formwork and incrementally casting concrete into this formwork to fabricate nonstandard concrete elements. The incremental casting and printing process anchors the concrete and clay together, creating a symbiotic and harmonious relationship. The concrete’s fluidity takes shape from the 3D printed clay formwork, allowing the clay to gain structure from the concrete as it cures. As the clay loses moisture, the formwork begins to shrink, crack, and reveal the concrete below. This self-demolding process produces easily removable formwork that can then be recycled by adding water to rehydrate the clay creating a nearly zero-waste formwork. This technique outlines multiple novel design features for complex concrete structures, including extended height limit, integrated void space design, tolerable overhang, and practical solutions for clay deformation caused by the physical stress during the casting process. The novelty of the process created by 3D printing clay formwork using an industrial robotic arm allows for rapid and scalable production of nearly zero-waste customizable formwork. More significant research implications can impact the construction industry, integrating more sustainable ways to build, enabled by digital fabrication technologies.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_333
id ecaade2021_333
authors Burger, Joris, Wangler, Timothy, Chiu, Yu-Hung, Techathuvanun, Chanon, Gramazio, Fabio, Kohler, Matthias and Lloret-Fritschi, Ena
year 2021
title Material-informed Formwork Geometry - The effects of cross-sectional variation and patterns on the strength of 3D printed eggshell formworks
doi https://doi.org/10.52842/conf.ecaade.2021.2.199
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 199-208
summary Fused deposition modelling (FDM) 3D printing of formworks for concrete has the potential to increase geometric freedom in concrete construction. However, one major limitation of FDM printed formworks is that they are fragile and often cannot support the hydrostatic pressure exerted by the concrete. The research project 'Eggshell' combines robotic 3D printing of formwork with the casting of a fast-hardening concrete to reduce hydrostatic pressure to a minimum. Eggshell can be used to fabricate architectural-scale building components; however, knowledge of the influence formwork geometry has on the hydrostatic pressure resistance is still sparse, resulting in unexpected breakages of the formwork. This paper presents an empirical study into the breakage behaviour of FDM printed formworks when subjected to hydrostatic pressure. Firstly, the study aims to give a first insight into the breakage behaviour of formworks with a constant cross-section by casting a self-compacting concrete into the formwork until breakage. Then, we investigate if three-dimensional patterning of the formwork can have a beneficial effect on the breakage behaviour. Finally, the preliminary results are validated through the fabrication of two full-scale columns. The empirical results point towards the fact that sharp corners in formworks are weaker compared to rounded corners. Although the presented results are still preliminary, they mark an important step in the development of reliable design and fabrication strategies using 3D printed formworks.
keywords 3D Printing; Formwork; Fused Deposition Modelling; Digital Concrete; Hydrostatic pressure; Eggshell
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac202119405
id ijac202119405
authors Cohen, Zach
year 2021
title Building sympathy: Waiting-with digital fabrication machines as a form of architectural labor
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 553–567
summary Many digital fabrication machines have potential dangers, for example, sudden fires or projectile debris; thus, architects are generally required to supervise these machines when they employ them to make things. It is unlikely that further mechanization will ever completely eliminate such dangers since they result from unpredictable material processes. Therefore, as digital fabrication machines proliferate throughout architecture schools and practices, architects will find themselves spending increasingly more time supervising them, and waiting. In this paper, I argue that architects should then not only embrace waiting-with digital fabrication machines as a new form of architectural labor, but also begin to explore the ways in which such waiting can be productive. I begin with a critique of many architects’ impatience with digital fabrication processes. I then use the continental philosopher Henri Bergson’s concept of “intuition” to discuss the productive potential of waiting-with. Finally, I use a speculative 3D printing workflow to present additional creative possibilities that can arise if architects intentionally build waiting into digital fabrication processes.
keywords Theory, labor, automation, time, 3D printing, sympathy, digital fabrication
series journal
email
last changed 2024/04/17 14:29

_id acadia21_302
id acadia21_302
authors Diniz, Nancy; Melendez, Frank
year 2021
title Inoculated Matter
doi https://doi.org/10.52842/conf.acadia.2021.302
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 302-305.
summary INOCULATED MATTER looks towards new possibilities for designing and making architectural elements with living organisms, upcycled waste, and 3D printing technologies. This research project, which is currently ongoing and has been developed over the past two years, includes a series of multi-scalar mycelium bio-composites, as a means of redefining material, water, and energy in the face of changing scales of manufacturing and resource cycles.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ascaad2021_083
id ascaad2021_083
authors El-Dabaa, Rana; Islam Salem, Sherif Abdelmohsen
year 2021
title Digitally Encoded Wood: 4D Printing of Hygroscopic Actuators for Architectural Responsive Skins
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 241-252
summary This paper exploits passive responsive actuators as a passive approach for adaptive façades. The study encodes the embedded hygroscopic parameters of wood through 4D printing of laminated wooden composites as a responsive wooden actuator. Several experiments focus on controlling the printed hygroscopic parameters based on the effect of 3D printing patterns and infill height on the wooden angle of curvature. We present a set of controlled printed hygroscopic parameters that stretch the limits in controlling the response of wood to humidity instead of the typical natural properties of wood. The results show a passive programmed self-actuated mechanism that can enhance responsive façade design with zero energy consumption through utilizing both material science and additive manufacturing mechanisms. This passive responsive mechanism can be utilized in adaptive facades for dynamic shading configurations.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_88
id sigradi2021_88
authors Evrim, Berfin
year 2021
title Hybrid Carbon Fiber and Jute Fiber Textile Bone Stool: Integrative Fabrication Method of Weaving and 3D Printing
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 629–641
summary The structural properties of Fiber Reinforced Polymers (FRP) encourage designers and architects to use textiles as a load-bearing architectural material to create lightweight and strong structures. Manufacturing techniques of FRPs are mostly concentrated on the molding method. This method requires an extra mold fabrication that causes waste of material. This study focuses on integrative weaving and 3D printing fabrication methods, which emphasize the lightweight property of the material. This integrative method avoids excessive material waste during fabrication by using an additive approach. 3D printing on textiles prevents significant deformation in a specific direction of the fabric instead of using any kind of synthetic resin for stiffening the fabric. Additionally, structural behavior simulation allows designers to understand the different loading conditions and maximize the strengths of each textile design by adding more material where it is needed for possible architectural applications.
keywords Stool Design, Bone Analysis, Textile Load Simulation, Weaving, 3D Printing
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_77
id sigradi2021_77
authors Gaete, Rocío and Rozas, Sebastián
year 2021
title From the Vertical to the Horizontal: 3D Printing Without the Requirement of Formwork
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1151–1162
summary The objective of this article is to develop a methodology to print self-supporting, synclastic and anticlastic double curved surfaces tending to the horizontal from the vertical without requiring formwork. To achieve this goal the following was studied, fist place, the definition, the stresses and behaviors of double curved surfaces. Second place, he performance and applications of 3D printing in the construction area, in three companies of this field. From the bibliographic review, the variables are identified to propose an algorithm to print synclastic and anticlastic surfaces in 3d. Finally, the feasibility of the method to print these types of surfaces in 3d was proven by printing four prototypes which confirmed the proper operation of the algorithm, along with showing aspects to improve at the time of printing.
keywords Impresión 3D, Manufactura aditiva, cordón de impresión, anticlástica, sinclástica.
series SIGraDi
email
last changed 2022/05/23 12:11

_id acadia21_438
id acadia21_438
authors Goidea, Ana; Popescu, Mariana; Andréen, David
year 2021
title Meristem Wall: An Exploration of 3d-printed Architecture
doi https://doi.org/10.52842/conf.acadia.2021.438
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 438-443.
summary Meristem Wall is a prototype for a 3D-printed building envelope, featuring a dynamically controllable network of integrated air channels that allow a fl uid and adaptive relationship between inside and outside. The wall integrates functional lighting and electricity, windows, and a custom CNC-knitted textile interior. It is fabricated through binder-jet sand 3D printing and points towards a climatically performative architecture inclusive of nonhuman life in urban contexts.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2023_446
id caadria2023_446
authors Guida, George
year 2023
title Multimodal Architecture: Applications of Language in a Machine Learning Aided Design Process
doi https://doi.org/10.52842/conf.caadria.2023.2.561
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 561–570
summary Recent advances in Natural Language Processing (NLP) and Diffusion Models (DMs) are leading to a significant change in the way architecture is conceived. With capabilities that surpass those of current generative models, it is now possible to produce an unlimited number of high-quality images (Dhariwal and Nichol 2021). This opens up new opportunities for using synthetic images and marks a new phase in the creation of multimodal 3D forms, central to architectural concept design stages. Presented here are three methodologies of generation of meaningful 2D and 3D designs, merging text-to-image diffusion models Stable Diffusion, and DALL-E 2 with computational methods. These allow designers to intuitively navigate through a multimodal feedback loop of information originating from language and aided by artificial intelligence tools. This paper contributes to our understanding of machine-augmented design processes and the importance of intuitive user interfaces (UI) in enabling new dialogues between humans and machines. Through the creation of a prototype of an accessible UI, this exchange of information can empower designers, build trust in these tools, and increase control over the design process.
keywords Machine Learning, Diffusion Models, Concept Design, Semantics, User Interface, Design Agency
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2021_148
id caadria2021_148
authors Hou, Yuhan and Loh, Paul
year 2021
title Towards Swarm Construction
doi https://doi.org/10.52842/conf.caadria.2021.1.673
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 673-682
summary Swarm intelligence has primarily been explored in architecture as a form-finding technique with resulting material articulation using advanced 3d-printing technology. Researchers in engineering have developed swarm robotics for construction and fabrication, typically constraints to small scale prototypes as the technology matures within the field. However, a few research explores the implication of swarm robotics for construction on the building or urban scale. This paper presents a novel swarm robotics construction method using mole-like digging technology to construct new architectural language using machine intelligence. The research discusses the role of swarm intelligence behaviours in design and synthesis such behaviour with machine logics. The paper addresses the conference theme through the speculative projection of future construction methodology and reflects on how automation can impact the future of construct and design.
keywords Swarm; Digital Fabrication; Robotic
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia21_112
id acadia21_112
authors Kahraman, Ridvan; Zechmeister, Christoph; Dong, Zhetao; Oguz, Ozgur S.; Drachenberg, Kurt; Menges, Achim; Rinderspacher, Katja
year 2021
title Augmenting Design
doi https://doi.org/10.52842/conf.acadia.2021.112
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 112-121.
summary In recent years, generative machine learning methods such as variational autoencoders (VAEs) and generative adversarial networks (GANs) have opened up new avenues of exploration for architects and designers. The presented work explores how these methods can be expanded by incorporating multiple abstract criteria directly into the formulation of the algorithm that negotiates these complex criteria and proposes a fitting design. It draws inspiration from the works of several design theorists who have developed such goal-oriented approaches to design, and sets up multiple-objective VAE and GAN frameworks with this idea in mind. The research demonstrates that by incorporating multiple constraints using auxiliary discriminator networks, the developed algorithms are able to generate innovative solutions to two example problems: the design of 2D digits, and the design of 3D voxel chairs. By speculating and examining the role of the designer in data based generative computational design workflows, the research aims to provide an approach for solving design tasks in the age of big data.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_631793 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002