CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 550

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
doi https://doi.org/10.52842/conf.caadria.2021.1.743
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_282
id caadria2021_282
authors Jauk, Julian, Vašatko, Hana, Gosch, Lukas, Christian, Ingolf, Klaus, Anita and Stavric, Milena
year 2021
title Digital Fabrication of Growth - Combining digital manufacturing of clay with natural growth of mycelium
doi https://doi.org/10.52842/conf.caadria.2021.1.753
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 753-762
summary In this paper we will demonstrate that a digital workflow and a living material such as mycelium, make the creation of smart structural designs possible. Ceramics industries are not as technically advanced in terms of digital fabrication, as the concrete or steel industries are. At the same time, bio-based materials that use growth as a manufacturing method, are often lacking in basic research. Our interdisciplinary research combines digital manufacturing - allowing a controlled material distribution, with the use of mycelial growth - enabling fibre connections on a microscopic scale. We developed a structure that uses material informed toolpaths for paste-based extrusion, which are built on the foundation of experiments that compare material properties and observations of growth. In this manner the tensile strength of 3D printed unfired clay elements was increased by using mycelium as an intelligently oriented fibre reinforcement. Assembling clay-mycelium composites in a living state allows force-transmitting connections within the structure. The composite named 'MyCera' has exhibited structural properties that open up the possibility of its implementation in the building industry. In this context it allows the design and efficient manufacturing of lightweight ceramic constructions customized to this composite, which would not have been possible using conventional ceramics fabrication methods.
keywords Mycelium; Clay; 3D Printing; Growth; Bio-welding
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2021_005
id caadria2021_005
authors Bedarf, Patrick, Martinez Schulte, Dinorah, Şenol, Ayça, Jeoffroy, Etienne and Dillenburger, Benjamin
year 2021
title Robotic 3D Printing of Mineral Foam for a Lightweight Composite Facade Shading Panel
doi https://doi.org/10.52842/conf.caadria.2021.1.603
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 603-612
summary This paper presents the design and fabrication of a lightweight composite facade shading panel using 3D printing (3DP) of mineral foams. Albeit their important role in industrial construction practice as insulators and lightweight materials, only little research has been conducted to use foams in 3DP. However, the recent development of highly porous mineral foams that are very suitable for extrusion printing opens a new chapter for development of geometrically complex lightweight building components with efficient formwork-free additive manufacturing processes. The work documented in this paper was based on preliminary material and fabrication development of a larger research endeavor and systematically explored designs for small interlocking foam modules. Furthermore, the robotic 3D Printing setup and subsequent processing parameters were tested in detail. Through extensive prototyping, the design space of a final demonstrator shading panel was mapped and refined. The design and fabrication process is documented and shows the potential of the novel material system in combination with fiber-reinforced ultra-high performance concrete (UHPC). The resulting composite shading panel highlights the benefits of using mineral foam 3DP to fabricate freeform stay-in-place formwork for lightweight facade applications. Furthermore, this paper discusses the challenges and limitations encountered during the project and gives a conclusive outlook for future research.
keywords robotic 3d-printing; mineral foam; lightweight construction; concrete formwork; facade shading panel
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_329
id caadria2021_329
authors Breseghello, Luca, Sanin, Sandro and Naboni, Roberto
year 2021
title Toolpath Simulation,Design and Manipulation in Robotic 3D Concrete Printing
doi https://doi.org/10.52842/conf.caadria.2021.1.623
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 623-632
summary Digital fabrication is blurring the boundaries between design, manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic. manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic."
keywords 3D Concrete Printing; Robotic Fabrication; Additive Manufacturing; Toolpath Simulation; Toolpath Manipulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_040
id ecaade2021_040
authors Zhan, Qiang, Wu, Hao, Zhang, Liming, Yuan, Philip F. and Gao, Tianyi
year 2021
title 3D Concrete Printing with Variable Width Filament
doi https://doi.org/10.52842/conf.ecaade.2021.2.153
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 153-160
summary Traditional mold-based concrete construction methods are inefficient, poor quality, and labor-intensive. Concrete 3D printing technology is expected to replace traditional methods as an emerging intelligent construction method due to its flexible, automatic, fast, and mold-free features. Concrete 3D printing is a method by extruding and selectively laminating construction materials onto a specific path, relying on fine-grained control of the printing material and the printing device. However, the maximum printing resolution is limited by the width of the toolpath. Filament width and printing resolution are two main factors that need to balance. In this paper, a variable width printing method is proposed using the active nozzle speed control method. The width of the print path can be adjusted according to the model details. A width control algorithm is proposed. The general workflow of variable width printing, including model preparation, toolpath planning, robotic fabrication, is also introduced, and a concrete bench is printed for experimental validation. The result shows great application potential for surface decoration and structural reinforcement. The efficiency, feasibility, and problems encountered in printing are analyzed and summarized.
keywords 3D concrete printing; variable filament width; robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_133
id caadria2021_133
authors Zhan, Qiang, Zhou, Xinjie and Yuan, Philip F.
year 2021
title Digital Design and Fabrication of a 3D Concrete Printed Prestressed Bridge
doi https://doi.org/10.52842/conf.caadria.2021.1.663
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 663-672
summary In recent years, additive manufacturing and 3D printing technologies have been increasingly used in the field of construction engineering. 3D Concrete printing is a kind of laminated printing method using concrete extrusion technique. Concrete has the advantages of high compressive strength, low deformation, and excellent durability, and has high application value in the construction field. However, as a brittle material, concrete has limited tensile and flexural strength. For beam like components, it is difficult to fully exert the compressive performance of the material relying solely on itself, so it is difficult to apply to the bending member. The experimental case introduced in this paper combined the prestressing system with concrete printing technology. A post-tensioning prestressing system suitable for prefabricated concrete 3D printing components, which combined the excellent tensile properties of steel bars with the compressive performance of the 3D concrete printed part was proposed.
keywords 3D concrete printing; Prestressed concrete; robotic fabrication; structural optimization
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2021_047
id ecaade2021_047
authors Zhang, Xiao, Yuan, Chao, Yang, Liu, Yu, Peiran, Ma, Yiwen, Qiu, Song, Guo, Zhe and Yuan, Philip F.
year 2021
title Design and Fabrication of Formwork for Shell Structures Based on 3D-printing Technology
doi https://doi.org/10.52842/conf.ecaade.2021.1.487
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 487-496
summary Shell structure is a kind of structure using a small amount of materials to obtain a large-span multi-functional space. However, lots of formwork and scaffold materials are often wasted in the construction process. This paper focuses on the shell structure construction using robotic 3D printing PLA (an environmental friendly material) technology as the background. The author explores the possibility of 3D printing technology in shell construction from small scale models in different construction method, and gradually optimizes the shell template shape suitable for PLA material in full-scale construction. Finally, the research team chose the bending-active 3D printing type and completed the construction of three full-scale concrete shell molds. Under the guidance of professor Philippe Block, the research team finished the final 3D printing mold with optimized slicing and bending logic and successfully used it as the template mold to carry the tiles which proved the feasibility of this construction method.
keywords Shell structure ; Formwork ; Geometric analysis; Form-finding; 3d printing
series eCAADe
email
last changed 2022/06/07 07:57

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia21_194
id acadia21_194
authors Robby, Klara; Erik, Kraft; Rupert, Demaine; Riccardo, Maleczek; Tomohiro, Foschi; , Tachi
year 2021
title Lotus: A curved folding design tool for Grasshopper
doi https://doi.org/10.52842/conf.acadia.2021.194
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 194-203.
summary Curved-crease origami design is a novel area of research with applications in fields such as architecture, design, engineering, and fabrication ranging between micro and macro scales. However, the design of such models is still a difficult task which requires preserving isometry between the 3D form and 2D unfolded state. This paper introduces a new software tool for Rhino/Grasshopper for interactive computational curved-crease origami design. Using a rule-line based approach, this tool has two functions: rigid-ruling bending of a flat sheet, and a patch-by-patch additive construction method for cylindrical and conical surfaces along curved creases.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_234
id ecaade2021_234
authors Turhan, Gözde Damla, Varinlioglu, Guzden and Bengisu, Murat
year 2021
title An Integrated Structural Optimization Method for Bacterial Cellulose-Based Composite Biofilms
doi https://doi.org/10.52842/conf.ecaade.2021.1.115
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 115-120
summary Today's technologies offer exciting new horizons to reconfigure the realm of digital design and fabrication with the use of biologically active materials. Some of the recent works have been exploring the potentials of utilizing biological systems either as mathematical models for digital design or as the material itself in digital fabrication. As one of the novel processes of recent design thinking approaches, this paper presents an example for the collaboration with living organisms and a multidisciplinary process in which the overall structure is based on the analysis of biological material properties, mechanical data acquisition and the integration to digital optimization. In this regard, bacterial cellulose-based composite biofilms were grown and tested for their tensile properties, followed by a proposal to integrate mechanical data to digital optimization for catenary forms to better engage with real world applications. The findings have shown that the use of catenary geometry for such biologically active materials that are relatively novel to the structural use has proven effective for different prototypes thanks to their natural and customized material properties such as the ability to self-stand and biodegrade.
keywords Material-based design; Structural optimization; Bacterial cellulose; Catenary geometry
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2021_144
id caadria2021_144
authors Zhu, Lufeng, Wibranek, Bastian and Tessmann, Oliver
year 2021
title Robo-Sheets - Double-Layered Structure Based on Robot-Aided Plastic Sheet Thermoforming
doi https://doi.org/10.52842/conf.caadria.2021.1.643
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 643-652
summary Computational design, in combination with robotic fabrication, allows the exploration of complex geometrical differentiation. Notably, thermoplastic sheet materials offer great potential for explorations in robotic fabrication due to their mailable qualities. However, the production of complex shapes from flat-sheet-thermoplastic materials usually depends on molds or on time-consuming procedures. This paper introduces a workflow for the design and fabrication of a double-curved surface made from plastic sheets, which develops a self-supporting structure through using robot-aided one-punch thermoforming. The thickness of a double-curved surface is optimized by applying the Finite Element Method. Notably, forming thermoplastic into a minimal surface strengthens its mechanical properties and this takes a relatively short period of time. According to the relationship between moment and stress in section, two connected minimal-surfaces form a three-dimensional I-profile, making it possible to construct a highly material-efficient structure. Unlike the normal form-finding process, the structure is not limited to compression-only geometry. Compared to thermoforming methods such as Single Point Incremental Forming (SPIF), our one-punch forming process described in this paper shows demonstrates high precision while being less time-consuming. Here, we present a one-to-one scale working prototype as proof of our approach.
keywords Robotic fabrication; Plastic sheet thermoforming; Lightweight structure; Self-supporting structure; Minimal surface
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2021_311
id caadria2021_311
authors Gu, Xiangshu, Tian, Shulin, Zhang, Baihui, Tong, Ziyu and Gan, Jingwen
year 2021
title SECTIONMATRIX - Mapping Urban Form through Urban Sections
doi https://doi.org/10.52842/conf.caadria.2021.2.599
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 599-608
summary Most of the traditional studies on urban morphology are based on aerial views. However, the 2D plane model fails to describe the height information of buildings and the relation of buildings and the urban external space. An urban section is another map of an urban area. Through a series of continuous vertical urban slices, the city texture can be transformed into planar linear information containing height and width information. This paper proposes several indicators to describe a series of urban section slices and uses a three-dimensional coordinate mapping method Sectionmatrix to quantify and analyze the relation between the physical geometrical indicators and urban form from the section perspective. Through the case analysis of multiple residential blocks in Nanjing, China, the results showed that Sectionmatrix is convenient and efficient. Sectionmatrix relates the geometrical properties to the spatial characteristics of urban areas and provides a new way to classify, map and define building typologies. This new classification method reveals the tortuosity and complexity of residential blocks. By bridging the gap between quantity and form, the research also suggests other possible applications of Sectionmatrix as a control instrument and test framework for entire cities planning and design.
keywords Urban Morphology; Urban Section; Sectionmatrix; Quantitative Analysis
series CAADRIA
email
last changed 2022/06/07 07:51

_id ascaad2021_008
id ascaad2021_008
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Assessing the Effectivity of Additive Manufacturing Techniques for the Production of Building Components: Implementing Innovation for Housing Construction in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 214-226
summary This paper examines the suitability of existing robotic technologies and large-scale 3D printing techniques for the fabrication of three-dimensional printed building components to be applied in the Saudi housing construction industry. The paper assesses a series of cases based on the applications for 3D-printing cement-based materials in construction. In particular, we investigate five different additive manufacturing techniques and evaluate their performance in terms of their flexibility/mechanism, control/navigation, calibration/operation system, fabrication suitability (in-situ or off-site), size of printed components, printing speed. The findings include in a matrix chart, where the advantages and disadvantages of each technique become evident. The paper further evaluates the suitability of each technique in relation to the particular climatical and socio-political context of Saudi Arabia, applicable to other construction industries with similar conditions.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_007
id ascaad2021_007
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Developing a Design Framework for the 3D Printing Production of Concrete Building Components: A Case Study on Column Optimization for Efficient Housing Solutions in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 713-726
summary This paper is examining the development of a design and fabrication framework aiming to increase the efficiency of the construction of concrete building components by introducing 3D concrete printing in the context of Saudi Arabia. In particular, we will present an algorithmic process focusing on the design and fabrication of a typical, mass customised, single-family house, which incorporates parametric modelling, topology optimisation, finite element (FE) analysis and robotic 3D printing techniques. We will test and verify our framework by designing and fabricating a loadbearing concrete column with structural and material properties defined by the Saudi Building Code of Construction. Our findings are highlighting the advantages and challenges of the proposed file-to-factory framework in comparison to the conventional construction methods currently applied in Saudi Arabia, or other similar sociopolitical contexts. By comparing the material usage in both conventional and optimised columns, the results have shown that material consumption has been reduced by 25%, the required labour in the construction site has been mitigated by 28 and the duration time has been reduced by 80% without the need for formwork.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_083
id ascaad2021_083
authors El-Dabaa, Rana; Islam Salem, Sherif Abdelmohsen
year 2021
title Digitally Encoded Wood: 4D Printing of Hygroscopic Actuators for Architectural Responsive Skins
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 241-252
summary This paper exploits passive responsive actuators as a passive approach for adaptive façades. The study encodes the embedded hygroscopic parameters of wood through 4D printing of laminated wooden composites as a responsive wooden actuator. Several experiments focus on controlling the printed hygroscopic parameters based on the effect of 3D printing patterns and infill height on the wooden angle of curvature. We present a set of controlled printed hygroscopic parameters that stretch the limits in controlling the response of wood to humidity instead of the typical natural properties of wood. The results show a passive programmed self-actuated mechanism that can enhance responsive façade design with zero energy consumption through utilizing both material science and additive manufacturing mechanisms. This passive responsive mechanism can be utilized in adaptive facades for dynamic shading configurations.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_88
id sigradi2021_88
authors Evrim, Berfin
year 2021
title Hybrid Carbon Fiber and Jute Fiber Textile Bone Stool: Integrative Fabrication Method of Weaving and 3D Printing
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 629–641
summary The structural properties of Fiber Reinforced Polymers (FRP) encourage designers and architects to use textiles as a load-bearing architectural material to create lightweight and strong structures. Manufacturing techniques of FRPs are mostly concentrated on the molding method. This method requires an extra mold fabrication that causes waste of material. This study focuses on integrative weaving and 3D printing fabrication methods, which emphasize the lightweight property of the material. This integrative method avoids excessive material waste during fabrication by using an additive approach. 3D printing on textiles prevents significant deformation in a specific direction of the fabric instead of using any kind of synthetic resin for stiffening the fabric. Additionally, structural behavior simulation allows designers to understand the different loading conditions and maximize the strengths of each textile design by adding more material where it is needed for possible architectural applications.
keywords Stool Design, Bone Analysis, Textile Load Simulation, Weaving, 3D Printing
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_148
id caadria2021_148
authors Hou, Yuhan and Loh, Paul
year 2021
title Towards Swarm Construction
doi https://doi.org/10.52842/conf.caadria.2021.1.673
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 673-682
summary Swarm intelligence has primarily been explored in architecture as a form-finding technique with resulting material articulation using advanced 3d-printing technology. Researchers in engineering have developed swarm robotics for construction and fabrication, typically constraints to small scale prototypes as the technology matures within the field. However, a few research explores the implication of swarm robotics for construction on the building or urban scale. This paper presents a novel swarm robotics construction method using mole-like digging technology to construct new architectural language using machine intelligence. The research discusses the role of swarm intelligence behaviours in design and synthesis such behaviour with machine logics. The paper addresses the conference theme through the speculative projection of future construction methodology and reflects on how automation can impact the future of construct and design.
keywords Swarm; Digital Fabrication; Robotic
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2021_027
id caadria2021_027
authors Lu, Ming, Zhou, Yifan, Wang, Xiang and Yuan, Philip F.
year 2021
title An optimization method for large-scale 3D printing - Generate external axis motion using Fourier series
doi https://doi.org/10.52842/conf.caadria.2021.1.683
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 683-692
summary With the increase in labor costs, more and more robot constructions appear in building construction and spatial structure fabrication. There are many robots working on large-scale objects. When the reach range of the robot cannot meet the requirements, so an external axis is needed. The external axis is usually a linear motion device, which can significantly increase the operating range of the robotic arm. In actual construction, it is also widely used. This article introduces a 3d printing coffee bar project. Because this project is of a large scale and needs to be printed at one time, the XYZ external axis was used in this project to complete the task. Inspired by this project, this article study several methods of optimizing the motion of external axes in large-scale construction. Finally, we chose to use the Fourier series as the most suitable method to optimize the printing path and programed this method as a component of FUROBOT for more convenient use. This article explains the principle of this method in detail. Finally, this article uses a 3D printing example to illustrate the precautions in actual use.
keywords robotics; motion optimize; Fourier series; 3D printing; external axis
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2023_395
id caadria2023_395
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldaboos, Sarah and Aldabous, Rahaf
year 2023
title Research on the Exploration of Sprayed Clay Material and Modeling System
doi https://doi.org/10.52842/conf.caadria.2023.2.231
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 231–240
summary As a traditional building material, clay has been used by humans for a long time. From early civilisations, to the modern dependence on new technologies, the craft of clay making is commonly linked with the use of moulds, handmade creations, ceramic extruders, etc. (Schmandt and Besserat, 1977). Clay in the form of bricks is one of the oldest building materials known (Fernandes et al, 2010). This research expands the possibilities offered by standardised bricks by testing types of clay, forms, shapes, porosity, and structural methods. The traditional way of working with clay relies on human craftsmanship and is based on the use of semi-solid clay (Fernandes et al., 2010). However, there is little research on the use of clay slurry. With the rise of 3D printing systems in recent years, research and development has been emerging on using clay as a 3D printing filament (Gürsoy, 2018). Researchers have discovered that in order for 3D-printed clay slurry to solidify quickly to support the weight of the added layers during printing, curing agents such as lime, coal ash, cement, etc. have to be added to the clay slurry. After adding these substances, clay is difficult to be reused and can have a negative effect on the environment (Chen et al., 2021). In this study, a unique method for manufacturing clay elements of intricate geometries is proposed with the help of an internal skeleton that can be continuously reused. The study introduces the process of applying clay on a special structure through spraying and showcases how this method creates various opportunities for customisation of production.
keywords Spray clay, Substructure, 3D printing, Modelling system, Reusable
series CAADRIA
email
last changed 2023/06/15 23:14

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_974136 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002