CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 582
Reformat results as: short short into frame detailed detailed into frame
Motivated by the ambition of printing on irregular surfaces of varied mediums, improving upon high price points of existing fl at-bed printing machines, and contributing to the public knowledge of distributed manufacturing, the Direct-To-Substrate (DTS) printer is an exploration into an integrated z-axis within inkjet printing. To realign a familiar technology used by many and hack it for the purposes of expanded capabilities, the DTS allows a user to manufacture a three-dimensional artifact and later print graphics directly upon said geometry using the same machine. To remain as accessible as possible, the DTS printer is a computer-numerically-controlled desktop machine made from common, sourceable hardware parts with a tool-changeable end effector, that currently accepts a Dremel tool as a router, and a hacked inkjet cartridge
A digital archive of 3D scanned logs are the building elements from which users, designing in the MR environment, can digitally harvest (though slicing) and place the elements into a digitally constructed whole. The constructed whole is structurally analyzed and optimized through recursive feedback loops to preserve the user’s predetermined design. This iterative toggling between the physical and virtual emancipates the use of irregular tree log structures while informing and prioritizing the user’s design intent. To test this approach, a scaled prototype was developed and fabricated in MR.
By creating a framework that links a holographic digital design to a physical catalog of material, the interactive workflow provides greater design agency to users as co-creators in processing material parts. This participation enables users to have a direct impact on the design of discretized tree logs that would otherwise have been discarded in standardized manufacturing. This paper presents an approach in which complex tree log structures can be made without the use of robotic fabrication tools. This workflow opens new opportunities for design in which users can freely configure structures with non-standardized elements within an intuitive MR environment.
As part of an international competition organized by LafargeHolcim Ltd. and its partners Witteveen & Bos, COBOD and Fondation des Ponts wich focused on realigning a traditionally manufactured residential building to concrete 3D printing technology, a team of students and researchers have developed a concept for a modular, function-integrated panel system for individualized wall and ceiling elements. The system is characterized by the fact that the integrated modular structures are printed flat on the floor and precise connections and structural joints are subtracted while the concrete is still in its green state.
For more results click below: