CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 582

_id sigradi2021_88
id sigradi2021_88
authors Evrim, Berfin
year 2021
title Hybrid Carbon Fiber and Jute Fiber Textile Bone Stool: Integrative Fabrication Method of Weaving and 3D Printing
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 629–641
summary The structural properties of Fiber Reinforced Polymers (FRP) encourage designers and architects to use textiles as a load-bearing architectural material to create lightweight and strong structures. Manufacturing techniques of FRPs are mostly concentrated on the molding method. This method requires an extra mold fabrication that causes waste of material. This study focuses on integrative weaving and 3D printing fabrication methods, which emphasize the lightweight property of the material. This integrative method avoids excessive material waste during fabrication by using an additive approach. 3D printing on textiles prevents significant deformation in a specific direction of the fabric instead of using any kind of synthetic resin for stiffening the fabric. Additionally, structural behavior simulation allows designers to understand the different loading conditions and maximize the strengths of each textile design by adding more material where it is needed for possible architectural applications.
keywords Stool Design, Bone Analysis, Textile Load Simulation, Weaving, 3D Printing
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_115
id ecaade2021_115
authors Foged, Isak and Hilmer, Jacob
year 2021
title Fiber Compositions - Development of wood and textile layered structures as a material strategy for sustainable design
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 443-452
doi https://doi.org/10.52842/conf.ecaade.2021.2.443
summary This study examines composite compositions based on fiber-based materials. It focuses on organic textiles of Jute, Hemp, Wool, Flax, and Glass fiber as a synthetic textile, combined with the lightweight wood species Paulownia. By creating novel composites, the study aims to investigate methods and generate design knowledge for material strategies to improve and reduce material waste in the built environment, further enabled by the use of small elements that can be sourced from waste wood and reclaimed wood. Research is conducted as a hybrid material-computational methodology, developing and testing probes, prototypes and a full-scale demonstrator assembly in the form of a wall seating composition. The results find that the proposed method and resulting composites have significant potentials for both expressive and functional characteristics, allowing tectonic articulation to be made, while creating minimum material structures based on assembly of small elements to larger complex curvature building parts.
keywords Wood; Textile; Composite; Computational Design; Environmental Design
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia21_28
id acadia21_28
authors Tessmer, Lavender; Tibbits, Skylar
year 2021
title Personalized Knit Masks
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 28-37.
doi https://doi.org/10.52842/conf.acadia.2021.028
summary In this paper we outline a new workflow for textiles customization through the design and fabrication of knit shape-changing masks that contain multi-material fibers to create programmable transformation. We have created a process for producing standardized and scalable textile goods using a flatbed industrial CNC knitting machine which are then "tailored" to an individual's body measurements through a system of programmable textiles, custom multi-material fiber, and robotic heat activation. Hybridizing the efficiency of standardized textile production with unique geometric variation, the proposed strategy centers on the shape-change behavior of fibers and precise knit structures to produce personalized textiles. This work focuses on the face mask as an example of a now-ubiquitous textile good that is often ill fitting and yet can now be highly tailored to an individual’s personal fit and comfort. This paper outlines the materials, knit fabric development, mask design, digital workflow, and fabrication steps for producing truly customized masks for an individual's unique facial geometry.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_454
id acadia21_454
authors Kaiser, Kimball; Aljomairi, Maryam
year 2021
title DTS Printer: Spatial Inkjet Printing
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 454-459.
doi https://doi.org/10.52842/conf.acadia.2021.454
summary Inkjet printing has become abundantly available to businesses, offi ces, and households ever since its commercialization in the late 1980s. Although roughly forty years have passed, the desktop printer is still limited to printing on thin fl at surfaces, mainly paper (Mills 1998). On the other hand, while larger fl atbed printing technology does offer printing on a wide-range of substrates of various thicknesses, it is limited to 2-axis printing and is mainly used for large scale commercial applications due to high machine costs.

Motivated by the ambition of printing on irregular surfaces of varied mediums, improving upon high price points of existing fl at-bed printing machines, and contributing to the public knowledge of distributed manufacturing, the Direct-To-Substrate (DTS) printer is an exploration into an integrated z-axis within inkjet printing. To realign a familiar technology used by many and hack it for the purposes of expanded capabilities, the DTS allows a user to manufacture a three-dimensional artifact and later print graphics directly upon said geometry using the same machine. To remain as accessible as possible, the DTS printer is a computer-numerically-controlled desktop machine made from common, sourceable hardware parts with a tool-changeable end effector, that currently accepts a Dremel tool as a router, and a hacked inkjet cartridge

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2021_078
id caadria2021_078
authors Li, Chao and Petzold, Frank
year 2021
title Integrating digital design and Additive Manufacturing through BIM-based digital support - A decision support system using Semantic Web and Multi-Criteria Decision Making
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 263-270
doi https://doi.org/10.52842/conf.caadria.2021.1.263
summary Additive Manufacturing in Construction (AMC) envisions a possible alternative for predominantly manual construction with various benefits. In addition to the well-known extrusion-based implementations of AMC, other techniques have been developed to meet various visual and functional requirement. However, the application of Additive Manufacturing (AM) into construction projects has to be carefully evaluated, especially during the early phases of architectural design when important decisions are made. From this point, this work devised an AMC-Oriented Design Decision Support System (DDSS) to identify suitable building components which can be manufactured with specific AM methods. In such a DDSS, knowledge base and decision-making strategy are both critical. To this end, principle of leveraging Semantic Web techniques and Multi-Criteria Decision Making (MCDM) methodologies will be addressed. At the current stage of our research, pre-printed building components using concrete material are considered during the decision support process.
keywords Additive Manufacturing in Construction; BIM; Design Decision Support System; Multi-Criteria Decision Making; Semantic Web
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia21_222
id acadia21_222
authors Lok, Leslie; Samaniego, Asbiel; Spencer, Lawson
year 2021
title Timber De-Standardized
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 222-231.
doi https://doi.org/10.52842/conf.acadia.2021.222
summary Timber De-Standardized is a framework that salvages irregular and regular shaped tree logs by utilizing a mixed reality (MR) interface for the design, fabrication, and assembly of a structurally viable tree log assembly. The process engages users through a direct, hands-on design approach to iteratively modify and design irregular geometry at full scale within an immersive MR environment without altering the original material.

A digital archive of 3D scanned logs are the building elements from which users, designing in the MR environment, can digitally harvest (though slicing) and place the elements into a digitally constructed whole. The constructed whole is structurally analyzed and optimized through recursive feedback loops to preserve the user’s predetermined design. This iterative toggling between the physical and virtual emancipates the use of irregular tree log structures while informing and prioritizing the user’s design intent. To test this approach, a scaled prototype was developed and fabricated in MR.

By creating a framework that links a holographic digital design to a physical catalog of material, the interactive workflow provides greater design agency to users as co-creators in processing material parts. This participation enables users to have a direct impact on the design of discretized tree logs that would otherwise have been discarded in standardized manufacturing. This paper presents an approach in which complex tree log structures can be made without the use of robotic fabrication tools. This workflow opens new opportunities for design in which users can freely configure structures with non-standardized elements within an intuitive MR environment.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_067
id caadria2021_067
authors Michopoulou, Sofia, Giesecke, Rena, Ward Van den Bulcke, Jonas, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Robotic Color Grading for Glass - Additive Manufacturing of Heterogeneous Color and Transparency
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 563-572
doi https://doi.org/10.52842/conf.caadria.2021.1.563
summary This paper presents a new additive manufacturing method for color grading of glass. Color-graded elements, ranging from product design to architectural scale, could filter light and view in a novel way through locally differentiated color and opacity, and produce color effects in space. Existing methods for manufacturing multi-colored glass are either not economic for building due to labor intensity, limited to surface applications or small scale objects made of resins or plastics. To allow for automated color grading of glass in two-and-a-half and three dimensions we propose a robotic multi-channel process. The multi-channel tool mounted on a Universal Robot consists of four compartments, containing red, yellow, blue and transparent glass granules. Colors can be mixed on the fly by implementing varying flow rate ratios along the print path. Loose granules are fused in a kiln at high temperature into color-graded glass elements. The goal of this research is to lay the basis for color-graded elements of larger size and volume with higher pattern differentiation for functional and aesthetic purposes.
keywords color grading; robotic fabrication; multi-channel printing; glass
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2021_011
id ecaade2021_011
authors Nováková, Kateøina and Vele, Jiøí
year 2021
title Prvok - An experiment with 3D printing large doublecurved concrete structure
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 137-144
doi https://doi.org/10.52842/conf.ecaade.2021.2.137
summary In this experimental research project we report on the manufacturing process of the first full-size 3D printed concrete structure in our country. The house was 3D printed by an ABB IRB 6700 robot whose range we made fit with the requirements for transportation size and also, its range determined the size and geometry of the house. During the transformation process from sketch to code we involved students to apply computational design methods. We designed the main load bearing structure which had to be thinnest and lightest possible together with its insulation features and printability. We were aware of the world-wide research in this field started by NASA centennial Challenge called 3D-printed-habitat [Roman,2020] as well as start-ups derived from this research [1,2,3,4]. During the project, we investigated the following matters: (1) the relationship between geometry of the wall in model and in practice (2), setting of the robot and the mixture; and (3) stress test of the wall. With the results of the test we aimed at contribution to standardisation of 3D printed structures in ISO/ASTM 52939:2021. The finalized structure, named "Prvok", was made to prove printability of the mixture and stability of the design.
keywords 3D printing; robot; concrete; grasshopper; experiment; house
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
doi https://doi.org/10.52842/conf.caadria.2021.1.743
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
doi https://doi.org/10.52842/conf.acadia.2021.328
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_368
id cdrf2021_368
authors B. Bala Murali Kumar, Yun Chung Hsueh, Zhuoyang Xin, and Dan Luo
year 2021
title Process and Evaluation of Automated Robotic Fabrication System for In-Situ Structure Confinement
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_34
summary The additive manufacturing process is gaining momentum in the construction industry with the rapid progression of large-scale 3D printed technologies. An established method of increasing the structural performance of concrete is by wrapping it with Fibre Reinforced Polymer (FRP). This paper proposes a novel additive process to fabricate a FRP formwork by dynamic layer winding of the FRP fabric with epoxy resin paired with an industrial scale robotic arm. A range of prototypes were fabricated to explore and study the fabrication parameters. Based on the systemic exploration, the limitations, the scope, and the feasibility of the proposed additive manufacturing method is studied for large scale customisable structural formworks.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_329
id caadria2021_329
authors Breseghello, Luca, Sanin, Sandro and Naboni, Roberto
year 2021
title Toolpath Simulation,Design and Manipulation in Robotic 3D Concrete Printing
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 623-632
doi https://doi.org/10.52842/conf.caadria.2021.1.623
summary Digital fabrication is blurring the boundaries between design, manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic. manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic."
keywords 3D Concrete Printing; Robotic Fabrication; Additive Manufacturing; Toolpath Simulation; Toolpath Manipulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_059
id ecaade2021_059
authors Lim, Ariel Cheng Sin and Thomsen, Mette Ramsgaard
year 2021
title Multi-Material Fabrication for Biodegradable Structures - Enabling the printing of porous mycelium composite structures
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 85-94
doi https://doi.org/10.52842/conf.ecaade.2021.1.085
summary Our awareness of the earth's depleting resources has directed focus towards biomaterials, which can be extracted sustainably and biodegraded after use. Current fabrication of biomaterial structures is still restricted in strength and geometry, limiting its use in construction. This paper presents a novel two-phase multi-material fabrication process to create mycelium composite structures of higher porosity and complexity with speculated improvements in strength. First, cellulose pulp inoculated with mycelium is extruded. Then, each layer is filled by a secondary supporting material. This material, in the form of a gravel- and sand-slurry, acts as an inhospitable medium steering mycelial growth, additionally improving aeration to produce stronger structures. After an intermediate growth period, the secondary material, reusable in a closed-loop production model, is removed to reveal the fully-grown mycelium structure. The paper reports on each of the three aspects: the fabrication process, material experimentation of primary and secondary substrates, as well as geometry of varying porosity and performance.
keywords biomaterials; mycelium; biodegradable structures; robotic fabrication; additive manufacturing
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia21_428
id acadia21_428
authors Rennen, Philipp; Khader, Noor; Hack, Norman; Kloft, Harald
year 2021
title A Hybrid Additive Manufacturing Approach
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 428-437.
doi https://doi.org/10.52842/conf.acadia.2021.428
summary Research in the field of additive manufacturing with concrete has gained enormous momentum in recent years. In practice, the first fully functional and habitable buildings have been realized. While these lighthouse projects have proven the general feasibility of 3D printing in construction, in the future it will be a matter of further expanding the potential of 3D printing, addressing important topics such as functional integration (reinforcement, piping, fasteners), material gradation (load-bearing, insulating) as well as disassembly and reuse.

As part of an international competition organized by LafargeHolcim Ltd. and its partners Witteveen & Bos, COBOD and Fondation des Ponts wich focused on realigning a traditionally manufactured residential building to concrete 3D printing technology, a team of students and researchers have developed a concept for a modular, function-integrated panel system for individualized wall and ceiling elements. The system is characterized by the fact that the integrated modular structures are printed flat on the floor and precise connections and structural joints are subtracted while the concrete is still in its green state.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2023_467
id sigradi2023_467
authors Scheeren, Rodrigo and Sperling, David Moreno
year 2023
title In between revolutions or the state of digital fabrication technologies in South America academia: a systematic and critical review
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 555–566
summary The main objective of this article is to grasp how technologies, techniques, and concepts related to Digital Fabrication were applied by South American players, in academic production from 2000 to 2021, through pedagogical activities, design projects, manufacturing processes, prototypes, and artifacts. We conducted a systematic review of publications from SIGraDi and eCAADe conferences, by authors active in South America during the period, identified from the CumInCAD database using the following terms: digital fabrication, digital manufacturing, digital fabrication, digital fabrication, rapid prototyping, CAD/CAM, robot* and 3d print*. 260 articles met the final criteria for inclusion, organized from the combination of 10 categories. The results show the dissemination of information about digital fabrication in many countries, focused on different trends of research and innovation, allowing us to understand the evolution of technological appropriation, thus offering an in-depth overview of our situation over the past 20 years.
keywords Digital Fabrication, Technological Appropriation, Systematic Review, Design Process, Digital Theory.
series SIGraDi
email
last changed 2024/03/08 14:07

_id acadia21_420
id acadia21_420
authors Shaker, Aya; Khader, Noor; Reiter, Lex; Anton, Ana
year 2021
title 3D Printed Concrete Tectonics
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 420-427.
doi https://doi.org/10.52842/conf.acadia.2021.420
summary Digital fabrication technologies and additive manufacturing techniques opened new opportunities and new challenges for the construction industry. Particularly, Concrete Extrusion 3D Printing (CE3DP) introduces valuable opportunities for large-scale architectural elements. However, segmentation and assembly strategies haven’t been developed, and it remains a limiting factor for the expansion of concrete 3d printing to an industrial scale. In this context, the present research focuses on the design and fabrication possibilities of assembly interfaces, an essential topic for scaled-up 3D printed concrete components. Therefore, dry assembly interfaces in different printing orientations are prototyped to investigate characteristics and limitations of connection options.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id ascaad2021_083
id ascaad2021_083
authors El-Dabaa, Rana; Islam Salem, Sherif Abdelmohsen
year 2021
title Digitally Encoded Wood: 4D Printing of Hygroscopic Actuators for Architectural Responsive Skins
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 241-252
summary This paper exploits passive responsive actuators as a passive approach for adaptive façades. The study encodes the embedded hygroscopic parameters of wood through 4D printing of laminated wooden composites as a responsive wooden actuator. Several experiments focus on controlling the printed hygroscopic parameters based on the effect of 3D printing patterns and infill height on the wooden angle of curvature. We present a set of controlled printed hygroscopic parameters that stretch the limits in controlling the response of wood to humidity instead of the typical natural properties of wood. The results show a passive programmed self-actuated mechanism that can enhance responsive façade design with zero energy consumption through utilizing both material science and additive manufacturing mechanisms. This passive responsive mechanism can be utilized in adaptive facades for dynamic shading configurations.
series ASCAAD
email
last changed 2021/08/09 13:13

_id cdrf2021_201
id cdrf2021_201
authors Giulia Grassi, Bjorn Sparrman, Ingrid Paoletti, and Skylar Tibbits
year 2021
title 4D Soft Material Systems
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_19
summary This work introduces multi-material liquid printing as an enabling technology for designing programmed shape-shifting silicones. The goal of this research is to provide a readily available, scalable and customized approach at producing responsive 4D printed structures for a wide range of applications. Hence, the methodology allows customization at each step of the procedure by intervening either on the material composition and/or on the design and fabrication strategies for the production of responsive components. A significant endeavour is initiated to develop and engineer two different material systems that enable shape-shifting: silicone-ethanol composites and polyvinyl siloxane swelling rubbers. The printed samples successfully comply with the expected swelling behaviour through a variety of printed test patterns.
series cdrf
email
last changed 2022/09/29 07:53

_id ascaad2021_017
id ascaad2021_017
authors Abouhadid, Mariam
year 2021
title Affective Computing in Space Design: A Review of Literature of Emotional Comfort Tools and Measurements
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 330-340
summary Architecture Digital Platforms are capable of creating buildings that provide comfort that meets human thermal, acoustic and visual needs. However, some building technologies can choose the physical energy arena of the building on the expense of the mentioned aspects of human comfort. Nevertheless, aspects like emotional and psychological human comfort exist in limited studies practiced in interior design, or in active design of public spaces and on the landscape and urban scale. It is not mandatory in building design: How different spaces affect humans and what makes an environment stressful or not. Study gathers literature theoretically and categorizes it per topic: 1) Affective computing Introduction and uses, 2) Human responses to different stimulus and environments, 3) Factors that affect humans, 4) Technologies like brain imaging and Galvanic Skin Response (GSR) that are used to measure human anxiety levels, as well as blood pressure and other indications on the person’s well-being, and some 5) Case Studies. Affective computing can be an addition to different pre- design analysis made to a project. Different areas of comfort like space dimensions, height, colour and shape can be the start of coding “Human Comfort” analysis software. Study has been restricted to previous research, and can be expanded further to experimentation. Future work aims to code it into Building Information Modelling Software.
series ASCAAD
email
last changed 2021/08/09 13:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_442091 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002