CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 608

_id caadria2021_088
id caadria2021_088
authors Batalle Garcia, Anna, Cebeci, Irem Yagmur, Vargas Calvo, Roberto and Gordon, Matthew
year 2021
title Material (data) Intelligence - Towards a Circular Building Environment
doi https://doi.org/10.52842/conf.caadria.2021.1.361
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 361-370
summary The integration of repurposed material in new construction products generates resiliency strategies that diminish the dependency on raw resources and reduce the CO2 emissions produced by their extraction, transportation, and manufacturing. This research emphasizes the need to expand preliminary data collation from pre-demolition sites to inform early design decisions. Material (data) Intelligence investigates how the merging of artificial intelligence and data analysis could have a crucial impact on achieving widespread material reuse. The first step consists of automating the process of detecting materials and construction elements from pre-demolition sites through drone photography and computer vision. The second part of the research links the resulting database with a computational design tool that can be integrated into construction software. This paper strengthens the potential of circular material flows in a digital paradigm and exposes the capability for constructing big data sets of reusable materials, digitally available, for sharing and organizing material harvesting.
keywords computer vision; material database; automation; reclaimed material; digitalization
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_118
id caadria2021_118
authors Huang, Chien-hua
year 2021
title Reinforcement Learning for Architectural Design-Build - Opportunity of Machine Learning in a Material-informed Circular Design Strategy
doi https://doi.org/10.52842/conf.caadria.2021.1.171
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 171-180
summary This paper discusses the potentials of reinforcement learning in game engine for design, implementation, and construction of architecture. It inaugurates a new design tool that promotes a material-informed design-build workflow for architectural design and construction industries that achieves a comprehensive circular economy. As a proof of concept, it uses the project Reform Standard, a machine-learning-based searching system that designs new shell structures composed of existing wasted materials, as a demonstration to discuss how reinforcement learning, machine vision and automated searching algorithm in the game engine can promote a material-aware design and converts wastes into construction materials. The demonstrator project sorts and transforms irregular chunks of wasted broken plastics into a new form. Instead of recycling those wastes in an energy-intensive process, the game engine is capable of finding the intricacy and new machine-oriented aesthetics in those otherwise neglected wastes. Furthermore, future research directions such as robotic-aided construction are discussed by exposing the potentials and problems in the demonstrated project. Finally, the future circular strategy is discussed beyond the demonstrated tests and local uses. The standardization of material, legislation and material lifecycle needs to be comprehensively considered and designed by architects and designers during conceptual design phase.
keywords Reinforcement Learning; ML-Agents; Unity3D; circular design; geometric analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2021_169
id ecaade2021_169
authors Qi, Yue, Zhong, Ruqing, Kaiser, Benjamin, Tahouni, Yasaman, Wagner, Hans-Jakob, Verl, Alexander and Menges, Achim
year 2021
title Augmented Accuracy - A human-machine integrated adaptive fabrication workflow for bamboo construction utilizing computer vision
doi https://doi.org/10.52842/conf.ecaade.2021.1.345
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 345-354
summary Despite being sustainable, strong and lightweight, naturally grown bamboo poles are currently used in restricted building typologies. This is due to the large tolerances in the built structures, which is caused by the variations in the dimensions and geometry of natural material as well as the manual, uninformed and imprecise assembly methods. In previous work, we introduced an adaptive fabrication method for bamboo structures that can monitor the fabrication process and compensate for deviations between built and designed form. As a proof of concept, the method is suitable for small scale bamboo structures in 2D- or simple 3D configuration. This paper extends the previous method by integrating the adaptation strategies into a cohesive fabrication and assembly workflow for large scale complex bamboo structures. To enable that, a more effective sensor localization method, adaptation algorithm, connection and assembly system, as well as web-based user interface are developed. The effectiveness of the proposed methods is demonstrated through the fabrication of a pavilion scale branching bamboo structure that complies with intended geometric boundary conditions. Even though the material has substantial geometrical variations, the final structure shows small geometric deviations and a successful interface with the prefabricated roof elements. Our work shows how vernacular materials and processes can be digitally augmented in order to reliably produce building structures, hence enabling their usage in modern applications to a larger extent.
keywords Adaptive Digital Fabrication; Construction Uncertainties; Computer Vision; Bamboo Structures; HMI
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
doi https://doi.org/10.52842/conf.caadria.2021.2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
doi https://doi.org/10.52842/conf.caadria.2021.1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_005
id caadria2021_005
authors Bedarf, Patrick, Martinez Schulte, Dinorah, Şenol, Ayça, Jeoffroy, Etienne and Dillenburger, Benjamin
year 2021
title Robotic 3D Printing of Mineral Foam for a Lightweight Composite Facade Shading Panel
doi https://doi.org/10.52842/conf.caadria.2021.1.603
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 603-612
summary This paper presents the design and fabrication of a lightweight composite facade shading panel using 3D printing (3DP) of mineral foams. Albeit their important role in industrial construction practice as insulators and lightweight materials, only little research has been conducted to use foams in 3DP. However, the recent development of highly porous mineral foams that are very suitable for extrusion printing opens a new chapter for development of geometrically complex lightweight building components with efficient formwork-free additive manufacturing processes. The work documented in this paper was based on preliminary material and fabrication development of a larger research endeavor and systematically explored designs for small interlocking foam modules. Furthermore, the robotic 3D Printing setup and subsequent processing parameters were tested in detail. Through extensive prototyping, the design space of a final demonstrator shading panel was mapped and refined. The design and fabrication process is documented and shows the potential of the novel material system in combination with fiber-reinforced ultra-high performance concrete (UHPC). The resulting composite shading panel highlights the benefits of using mineral foam 3DP to fabricate freeform stay-in-place formwork for lightweight facade applications. Furthermore, this paper discusses the challenges and limitations encountered during the project and gives a conclusive outlook for future research.
keywords robotic 3d-printing; mineral foam; lightweight construction; concrete formwork; facade shading panel
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_012
id ecaade2021_012
authors Blaney, Adam
year 2021
title Material Units - Uploading information into matter via stimuli and the challenges of determining feedback
doi https://doi.org/10.52842/conf.ecaade.2021.2.431
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 431-442
summary Associative and generative design processes are capable of creating complex digital models, which can have their digital material properties (size, aesthetics, performance) infinitely adapted or radically transformed, relative to design demands, if they remain in their digital environments. Imagine, if physical materials and structures had these abilities, where design updates could be uploaded into a structure's physical material makeup at molecular resolutions. This could begin to enable a physical structure's matter to be reprogrammed so they can adapt across their length scales with high sensitivities and multi-material properties. To leverage these abilities, novel design and fabrication processes need to be developed, which enable interrelationships between design parameters, assembly mechanisms and material properties. This paper presents key findings and implications of two final prototypes, from a series, which developed a design and fabrication approach termed tuneable environments that enables interrelationships and design information to be uploaded into matter at granular resolutions.
keywords tuneable environments; programmable matter
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2021_333
id ecaade2021_333
authors Burger, Joris, Wangler, Timothy, Chiu, Yu-Hung, Techathuvanun, Chanon, Gramazio, Fabio, Kohler, Matthias and Lloret-Fritschi, Ena
year 2021
title Material-informed Formwork Geometry - The effects of cross-sectional variation and patterns on the strength of 3D printed eggshell formworks
doi https://doi.org/10.52842/conf.ecaade.2021.2.199
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 199-208
summary Fused deposition modelling (FDM) 3D printing of formworks for concrete has the potential to increase geometric freedom in concrete construction. However, one major limitation of FDM printed formworks is that they are fragile and often cannot support the hydrostatic pressure exerted by the concrete. The research project 'Eggshell' combines robotic 3D printing of formwork with the casting of a fast-hardening concrete to reduce hydrostatic pressure to a minimum. Eggshell can be used to fabricate architectural-scale building components; however, knowledge of the influence formwork geometry has on the hydrostatic pressure resistance is still sparse, resulting in unexpected breakages of the formwork. This paper presents an empirical study into the breakage behaviour of FDM printed formworks when subjected to hydrostatic pressure. Firstly, the study aims to give a first insight into the breakage behaviour of formworks with a constant cross-section by casting a self-compacting concrete into the formwork until breakage. Then, we investigate if three-dimensional patterning of the formwork can have a beneficial effect on the breakage behaviour. Finally, the preliminary results are validated through the fabrication of two full-scale columns. The empirical results point towards the fact that sharp corners in formworks are weaker compared to rounded corners. Although the presented results are still preliminary, they mark an important step in the development of reliable design and fabrication strategies using 3D printed formworks.
keywords 3D Printing; Formwork; Fused Deposition Modelling; Digital Concrete; Hydrostatic pressure; Eggshell
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_202
id ecaade2021_202
authors Campos, Tatiana, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title The Use of Natural Materials in Additive Manufacturing of Buildings Components - Towards a more sustainable architecture
doi https://doi.org/10.52842/conf.ecaade.2021.1.355
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 355-364
summary The demand for sustainable building materials is currently a major concern of society. It is known that the traditional construction industry requires a high consumption of inorganic materials, which is associated with the excessive production of waste. Thus, this article intends to demonstrate the possibility of using the Additive Manufacturing (AM) technique Paste Extrusion Modeling (PEM) in the production of reusable, biodegradable and recyclable construction systems, using a combination of different natural materials that have created multiple pastes with different additives.Cellulose is a natural material - biodegradable, recyclable and low cost - and its implementation aims to change some aspects of the current state of the construction sector and can have a real impact on the exploration of innovative solutions and more sustainable alternative building systems. The integration of AM techniques, PEM method, supported by computational modelling tools, will allow the definition of a building system and its components. Depending on the material used - natural materials or biomaterials - the constraints and limitations of AM will be considered.
keywords Cellulose; Natural Fibers; Additive Manufacturing; Sustainable Construction
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_251
id ecaade2021_251
authors Carvalho, Joao, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title Ceramic AM Gantry Structures - Discretisation and connections between beams and columns
doi https://doi.org/10.52842/conf.ecaade.2021.2.483
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 483-492
summary The manufacture of architectural components driven by digital design tools and Additive Manufacturing (AM) allows the achievement of highly evolved constructive systems, more integrated into a specific reality to which it is intended to respond, resulting in unique and adapted solutions with high geometric and material performances. Considering the application of these methods to common structural elements, namely beams and columns, for which there are already several examples demonstrating their feasibility, we find that it is necessary to provide a sound answer to an element that is fundamental for these proposals to function together as a single system - the moment of connection between beams and columns. In this sense, this paper proposes the design and test of a set of connections with adapted geometry between beams and columns, produced through ceramic Liquid Deposition Modelling (LDM), applying logics of topological optimization. This work foresees the development of a constructive system that incorporates reversible and irreversible connections, being formalised in a set of gantry structures formed by two vertical elements and a horizontal one, giving the comparative model between digital design and manufacture methods and the traditional ones.
keywords Ceramic AM; Performative design; Computational design; Connections; Ceramic gantry structure
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2021_368
id caadria2021_368
authors Cheng, Fang-Che, Yen, Chia-Ching and Jeng, Tay-Sheng
year 2021
title Object Recognition and User Interface Design for Vision-based Autonomous Robotic Grasping Point Determination
doi https://doi.org/10.52842/conf.caadria.2021.1.633
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 633-642
summary The integration of Robot Operating System (ROS) with Human-Machine Collaboration (HMC) currently represents the future tendency toward Autonomous Robotic In-Situ Assembly on Construction Sites. In comparison with the industrial environment, construction sites nowadays are extremely complex and unpredictable, due to the different building components and customized design.This paper presents a visual-based object recognition method and user interface enabling on-site robot arms to autonomously handle building components, to build specific designs without the influence of material, shape, and environment. The implementation is an object recognition approach that serves with KUKA industrial robotic manipulator along with an RGB-depth stereo camera in an eye-in-hand configuration to grasp and manipulate found elements to build the desired structure. Opportunities for using vision-based autonomous robotic in-situ assembly on construction sites are reviewed.
keywords computer vision; robot operating system; object recognition; pose estimate; grasping point determination; human-robot collaboration
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id ijac202119405
id ijac202119405
authors Cohen, Zach
year 2021
title Building sympathy: Waiting-with digital fabrication machines as a form of architectural labor
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 553–567
summary Many digital fabrication machines have potential dangers, for example, sudden fires or projectile debris; thus, architects are generally required to supervise these machines when they employ them to make things. It is unlikely that further mechanization will ever completely eliminate such dangers since they result from unpredictable material processes. Therefore, as digital fabrication machines proliferate throughout architecture schools and practices, architects will find themselves spending increasingly more time supervising them, and waiting. In this paper, I argue that architects should then not only embrace waiting-with digital fabrication machines as a new form of architectural labor, but also begin to explore the ways in which such waiting can be productive. I begin with a critique of many architects’ impatience with digital fabrication processes. I then use the continental philosopher Henri Bergson’s concept of “intuition” to discuss the productive potential of waiting-with. Finally, I use a speculative 3D printing workflow to present additional creative possibilities that can arise if architects intentionally build waiting into digital fabrication processes.
keywords Theory, labor, automation, time, 3D printing, sympathy, digital fabrication
series journal
email
last changed 2024/04/17 14:29

_id ijac202119106
id ijac202119106
authors Del Campo, Matias; Alexandra Carlson, and Sandra Manninger
year 2021
title Towards Hallucinating Machines - Designing with Computational Vision
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 88–103
summary There are particular similarities in how machines learn about the nature of their environment, and how humans learn to process visual stimuli. Machine Learning (ML), more specifically Deep Neural network algorithms rely on expansive image databases and various training methods (supervised, unsupervised) to “make sense” out of the content of an image. Take for example how students of architecture learn to differentiate various architectural styles. Whether this be to differentiate between Gothic, Baroque or Modern Architecture, students are exposed to hundreds, or even thousands of images of the respective styles, while being trained by faculty to be able to differentiate between those styles. A reversal of the process, striving to produce imagery, instead of reading it and understanding its content, allows machine vision techniques to be utilized as a design methodology that profoundly interrogates aspects of agency and authorship in the presence of Artificial Intelligence in architecture design. This notion forms part of a larger conversation on the nature of human ingenuity operating within a posthuman design ecology. The inherent ability of Neural Networks to process large databases opens up the opportunity to sift through the enormous repositories of imagery generated by the architecture discipline through the ages in order to find novel and bespoke solutions to architectural problems. This article strives to demystify the romantic idea of individual artistic design choices in architecture by providing a glimpse under the hood of the inner workings of Neural Network processes, and thus the extent of their ability to inform architectural design.The approach takes cues from the language and methods employed by experts in Deep Learning such as Hallucinations, Dreaming, Style Transfer and Vision. The presented approach is the base for an in-depth exploration of its meaning as a cultural technique within the discipline. Culture in the extent of this article pertains to ideas such as the differentiation between symbolic and material cultures, in which symbols are defined as the common denominator of a specific group of people.1 The understanding and exchange of symbolic values is inherently connected to language and code, which ultimately form the ingrained texture of any form of coded environment, including the coded structure of Neural Networks.A first proof of concept project was devised by the authors in the form of the Robot Garden. What makes the Robot Garden a distinctively novel project is the motion from a purely two dimensional approach to designing with the aid of Neural Networks, to the exploration of 2D to 3D Neural Style Transfer methods in the design process.
keywords Artificial intelligence, design agency, neural networks, machine learning, machine vision
series journal
email
last changed 2021/06/03 23:29

_id acadia21_302
id acadia21_302
authors Diniz, Nancy; Melendez, Frank
year 2021
title Inoculated Matter
doi https://doi.org/10.52842/conf.acadia.2021.302
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 302-305.
summary INOCULATED MATTER looks towards new possibilities for designing and making architectural elements with living organisms, upcycled waste, and 3D printing technologies. This research project, which is currently ongoing and has been developed over the past two years, includes a series of multi-scalar mycelium bio-composites, as a means of redefining material, water, and energy in the face of changing scales of manufacturing and resource cycles.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2021_376
id caadria2021_376
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2021
title Topology Generated Non-Fungible Tokens - Blockchain as infrastructure for a circular economy in architectural design
doi https://doi.org/10.52842/conf.caadria.2021.2.151
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 151-160
summary The paper presents a new digital infrastructure layer for buildings and architectural assets. The infrastructure layer consists of a combination of topology graphs secured on a decentralised ledger. The topology graphs organise non-fungible digital tokens which each represent and correspond to building components, and in the root of the graph to the building itself.The paper presents background research in the relationship of building representation in the form of graphs with topology, of both manifold and non manifold nature. In parallel we present and analyse the relationship between digital representation and physical manifestation of a building, and back again. Within the digital representations the paper analyses the securing and saving of information on decentralised ledger technologies (such as blockchain). We then present a simple sample of generating and registering a non-manifold topology graph on the Ethereum blockchain as an EC721 token, i.e. a digital object that is unique, all through the use of dynamo and python scripting connected with a smart contract on the Ethereum blockchain. Ownership of this token can then be transferred on the blockchain smart contracts. The paper concludes with a discussion of the possibilities that this integration brings in terms of material passports and a circular economy and smart contracts as an infrastructure for whole-lifecycle BIM and digitally encapsulates of value in architectural designPlease write your abstract here by clicking this paragraph.
keywords Blockchain; Tokenisation; Topology; Circular Economy; decentralisation
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia23_v3_207
id acadia23_v3_207
authors Doyle, Shelby; Bogosian, Biayna; Goldman, Melissa
year 2023
title ACADIA Cultural. History Fellowship
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The Association for Computer Aided Design in Architecture (ACADIA) launched the Cultural History Project in 2021 to mark the 40th anniversary of the organization and the 41st anniversary of the conference. This initiative has provided an opportunity to reflect upon the legacy and trends of the organization as a method for considering its future. The Cultural History Project began with an open-access digital archive of the organization’s Proceedings and Quarterlies and evolved into a larger discourse about how the ACADIA community values and promotes forms of computational knowledge. A summary essay included in the 2021 Proceedings (Image 2) reflects on what the archive reveals about ACADIA and its “habits”. Habits are settled tendencies or practices, especially ones that are difficult to relinquish. The term implies repetition, perhaps unconscious, that becomes normalized through its reiteration. The 2023 ACADIA Conference, “Habits of the Anthropocene,” marks the 43rd anniversary of the conference and the 42nd anniversary of ACADIA as an organization. What are the computational habits we need to identify, recall, question, break, and replace with new (or perhaps old) ways of thinking and working?
series ACADIA
email
last changed 2024/04/17 14:00

_id sigradi2021_176
id sigradi2021_176
authors Escaleira, Cláudia, Morais, António, Figueiredo, Bruno and Cruz, Paulo
year 2021
title Reuse of Ceramic Roof Tiles: Enhancing New Functional Design Possibilities Through the Integration of Digital Tools for Simulation, Manufacture and Assembly
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1475–1486
summary The material qualities of ceramic roof tiles have provided new formal interpretations that induced a new functional use—a wall. By disassembling ceramic roof tiles from roofs and assembling them into walls, its circularity potential was enlarged. This paper explores the potential use of ceramic roof tiles, as a single element type, in the definition of wall design systems and patterns of composition that comply with design for manufacture, assembly and disassembly (DfMA-D) requirements, through the development of a shape grammar and implementation through parametric models. The new shape grammar extends the compositional patterns already produced and the redefinition of the connection systems by incorporating DfMA-D requirements into the shape grammar rules sets new combinatorial patterns aligned with European Union goals for building circularity. The parametric models automate the generation of design solutions and extend the design process to the assembly and disassembly stages using robotic fabrication techniques.
keywords circular building, component reuse, computational design, ceramic roof tiles, robotics in architecture
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_115
id ecaade2021_115
authors Foged, Isak and Hilmer, Jacob
year 2021
title Fiber Compositions - Development of wood and textile layered structures as a material strategy for sustainable design
doi https://doi.org/10.52842/conf.ecaade.2021.2.443
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 443-452
summary This study examines composite compositions based on fiber-based materials. It focuses on organic textiles of Jute, Hemp, Wool, Flax, and Glass fiber as a synthetic textile, combined with the lightweight wood species Paulownia. By creating novel composites, the study aims to investigate methods and generate design knowledge for material strategies to improve and reduce material waste in the built environment, further enabled by the use of small elements that can be sourced from waste wood and reclaimed wood. Research is conducted as a hybrid material-computational methodology, developing and testing probes, prototypes and a full-scale demonstrator assembly in the form of a wall seating composition. The results find that the proposed method and resulting composites have significant potentials for both expressive and functional characteristics, allowing tectonic articulation to be made, while creating minimum material structures based on assembly of small elements to larger complex curvature building parts.
keywords Wood; Textile; Composite; Computational Design; Environmental Design
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2021_111
id caadria2021_111
authors Gautama, Jennifer, Yogiaman, Christine and Tracy, Kenneth
year 2021
title Future Coastal Cities with Biorock Infrastructure - Alternative Coastal Futures with Biodesign
doi https://doi.org/10.52842/conf.caadria.2021.1.483
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 483-492
summary Despite having the potential of being a durable building material, Biorock, a form of calcium carbonate formed by the electro-accumulation of minerals dissolved in seawater, has never been applied on an architectural level due to its slow accretion process. This paper aims to plays out the possible narrative of this slow accruing material process in the incrementally submerged coastline of Jakarta, to empower local marginalized communities to self-construct a new city for habitation using Biorock, especially where building material resources may be limited. Urban cores with basic communal, housing and aquaculture facilities will be established using Biorock as the main building structure, which would be harvested in response to the gradual sea level rise.
keywords Biorock; Accretion; Aggregation; Coastal Floods; Biodesign
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_458827 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002