CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id caadria2021_039
id caadria2021_039
authors Chen, Jielin, Stouffs, Rudi and Biljecki, Filip
year 2021
title Hierarchical (multi-label) architectural image recognition and classification
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 161-170
doi https://doi.org/10.52842/conf.caadria.2021.1.161
summary The task of architectural image recognition for both architectural functionality and style remains an open challenge. In addition, the paucity of well-organized, large-scale architectural image datasets with specific consideration for the domain of architectural design research has hindered the exploration of these challenging tasks. Drawing upon images from the professional architectural website Archdaily®, and leveraging state-of-the-art deep-learning-based classification models, we explore a hierarchical multi-label classification model as a potential baseline for the task of architectural image classification. The resulting model showcases the potential for innovative architectural discipline-related analyses and demonstrates some heuristic insights for visual feature extraction pertaining to both architectural functionality and architectural style.
keywords image recognition; hierarchical classification; multi-label classification; architectural functionality; style
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_368
id caadria2021_368
authors Cheng, Fang-Che, Yen, Chia-Ching and Jeng, Tay-Sheng
year 2021
title Object Recognition and User Interface Design for Vision-based Autonomous Robotic Grasping Point Determination
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 633-642
doi https://doi.org/10.52842/conf.caadria.2021.1.633
summary The integration of Robot Operating System (ROS) with Human-Machine Collaboration (HMC) currently represents the future tendency toward Autonomous Robotic In-Situ Assembly on Construction Sites. In comparison with the industrial environment, construction sites nowadays are extremely complex and unpredictable, due to the different building components and customized design.This paper presents a visual-based object recognition method and user interface enabling on-site robot arms to autonomously handle building components, to build specific designs without the influence of material, shape, and environment. The implementation is an object recognition approach that serves with KUKA industrial robotic manipulator along with an RGB-depth stereo camera in an eye-in-hand configuration to grasp and manipulate found elements to build the desired structure. Opportunities for using vision-based autonomous robotic in-situ assembly on construction sites are reviewed.
keywords computer vision; robot operating system; object recognition; pose estimate; grasping point determination; human-robot collaboration
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_382
id caadria2021_382
authors Heidari, Farahbod, Saleh Tabari, Mohammad Hassan, Mahdavinejad, Mohammadjavad, Werner, Liss C. and Roohabadi, Maryam
year 2021
title Bio-Energy Management from Micro-Algae Bio-Computational Based Reactor
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 401-410
doi https://doi.org/10.52842/conf.caadria.2021.1.401
summary Microalgae are a sustainable source of unique properties with potential for various applications. Biofuel production has led to the use of them as bioreactors on an architectural scale. Most of these efforts cannot manage the output due to the lack of intelligent control and monitoring over environmental micro-scale growth. This research presents the possibility of control and monitoring over the bio-energy retrieved through micro-organisms in bio-reactors, specifically the growth environments computation. To achieve monitoring, three dimensions of the medium culture captured by cameras, and with the advantage of image processing, the picture frames pixel values measured. In this process, we use the Python OpenCV Library as an image processing reference. Finally, a specifically developed algorithm analyses the calculated 3d-matrix. By changing the environmental parameters, control happens by directly recognizing changes in density and outputs. This researchs computational process has proposed a novel approach for controlling particle-based environments to reach the desired functions of microorganisms, This approach can use in a wide range of cases as a method.
keywords Bio-Computation; Monitoring; Image Processing; Pattern Recognition; Multi-Functional Bio-Materials
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2021_166
id caadria2021_166
authors Hu, Wei
year 2021
title The experiment of neural network on the cognition of style
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 61-70
doi https://doi.org/10.52842/conf.caadria.2021.2.061
summary This paper introduces a method to obtain quantified style description vector which is for computer analysis input by using image style classification task. In the experiment, 3331 architectural photos of three styles obtained by crawling and filtering were used as training data. A deep convolutional neural network was trained to map architectural images to high-dimensional feature space, and then the high-dimensional style description vector was used to output the measurement results of style cognition with fully connected neural network. Tested by test data-set of 371 architectural pictures, the accuracy rate of style cognition reached more than 80%. The neural network using architectural data training was applied to the style cognition of non-architectural objects, high accuracy rate was also achieved, it proved that this quantified style description vector did include the information about style cognition to some extent instead of simply classification. Finally, the similarities and differences between the cognitive characteristics of style of neural network and human beings are investigated.
keywords deep neural network; style cognition experiment; eye tracker
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia21_512
id acadia21_512
authors Liu, Zidong
year 2021
title Topological Networks Using a Sequential Method
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 512-519.
doi https://doi.org/10.52842/conf.acadia.2021.512
summary The paper shares preliminary results of a novel sequential method to expand existing topology-based generative design. The approach is applied to building an interactive community design system based on a mobile interface. In the process of building an interactive design system, one of the core problems is to harness the complex topological network formed by user demands. After decades of graph theory research in architecture, a consensus on self-organized complex networks has emerged. However, how to convert input complex topological data into spatial layouts in generative designs is still a difficult problem worth exploring. The paper proposes a way to simplify the problem: in some cases, the spatial network of buildings can be approximated as a collection of sequences based on circulation analysis. In the process of network serialization, the personalized user demands are transformed into activity patterns and further into serial spaces. This network operation gives architects more room to play with their work. Rather than just designing an algorithm that directly translates users’ demands into shape, architects can be more actively involved in organizing spatial networks by setting up a catalogue of activity patterns of the residents, thus contributing to a certain balance of top-down order and bottom-up richness in the project. The research on data serialization lays a solid foundation for the future exploration of Recurrent Neural Network (RNN) applied to generative design.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_038
id ecaade2021_038
authors Nakabayashi, Mizuki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2021
title Mixed Reality Landscape Visualization Method with Automatic Discrimination Process for Dynamic Occlusion Handling Using Instance Segmentation
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 539-546
doi https://doi.org/10.52842/conf.ecaade.2021.2.539
summary Mixed reality (MR), which blends real and virtual worlds, has attracted attention as a visualization method in landscape design. MR-based landscape visualization enables stakeholders to examine landscape changes at actual scale in real-time at the actual project site. One challenge in MR-based landscape visualization is occlusion, which occurs when virtual objects obscure physical objects that are in the foreground. Previous research proposed an MR-based landscape visualization method with dynamic occlusion by using semantic segmentation of deep learning. However, this method has two problems. The first is that the same kind of objects that are grouped into one or overlapped types are classified as the same object, and the other is that the foreground objects have to be defined in pre-processing. In this study, we developed a system for large-scale MR landscape visualization that enables the recognition of each physical object individually using instance segmentation, and it is possible to accurately represent the positional relationship by comparing the coordinate information of the 3D virtual model and all physical objects.
keywords landscape visualization; mixed reality; instance segmentation; dynamic occlusion handling; deep learning
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2021_272
id caadria2021_272
authors Naruse, Masashi, Bileguutee, Ulemjjargal and Mizutani, Akihiro
year 2021
title A study on chair design by interactive three-dimensional modeling using sketching interface
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 263-272
doi https://doi.org/10.52842/conf.caadria.2021.2.263
summary This paper discusses the potential derived by developing a sketching interface to achieve an intuition-oriented design process for beginners, focusing on fabrication. Using experiments and a questionnaire, we evaluate both the method developed and the change in the consciousness of participation in full-scale 3D (Three Dimensional) design. A specific feature of the developed sketching interface is that it is not fully packaged; it means designers can modify and customize a tool to their needs. However, there was no difference between the sketching interface and ordinary 3D CAD (Computer-Aided Design) in increasing the motivation to use computers to fabricate; including a customizable feature (not fully packaged) could open up the possibilities of increasing motivation for the subjects to participate in the fabrication. The experiment results demonstrated that the sketching interface input system has equivalent reproducibility to existing 3D CAD, and even beginners can intuitively and immediately realize fabrication.
keywords 3D CAD; sketching interface; fabrication support; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2021_199
id sigradi2021_199
authors Sencan, Inanç, Alaçam, Sema and Sener, Sinan Mert
year 2021
title Designing Printers that Print onto Spherical Geometries: A Lo-Fi Prototyping Case
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 559–570
summary This study presents a novel 3D printing mechanism specifically designed to print on spherical surfaces. Fused Deposition Modeling (FDM) is adopted. The initial prototypes of the designed 3D printer have been tested with a specific focus on rotational movement mechanism and developing G-code solutions. The results of the low fidelity prototyping process are discussed in the context of stability of the system, usability of the proposed tool, sufficiency of step motor torque, distance between nozzle and the printing surface, producibility with reasonable budget, and flexibility. The distinctive feature of this study, unlike robot-aided additive manufacturing applications, is that it can be achieved with a low budget. The study is expected to be useful for designers who are interested in designing bespoke additive manufacturing solutions for double-curved and spherical geometries.
keywords Additive manifacturing, Tool design, Direct-to-shape, Complex geometries
series other
type normal paper
email
last changed 2022/06/16 10:00

_id cdrf2021_45
id cdrf2021_45
authors Wen Gao, Xuanming Zhang, Weixin Huang, and Shaohang Shi
year 2021
title Command2Vec: Feature Learning of 3D Modeling Behavior Sequence—A Case Study on “Spiral-stair”
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_5
summary In this study, we applied machine learning to mine the event logs generated in modeling process for behavior sequence clustering. The motivation for the study is to develop cognitively intelligent 3D tools through process mining which has been a hot area in recent years. In this study, we develop a novel classification method Command2Vec to perceive, learn and classify different design behavior during 3D-modeling aided design process. The method is applied in a case study of 112 participate students on a ‘Spiral-stair’ modeling task. By extracting the event logs generated in each participate student’s modeling process into a new data structures: ‘command graph’, we classified participants’ behavior sequences from final 99 valid event logs into certain groups using our novel Command2Vec. To verify the effectiveness of our classification, we invited five experts with extensive modeling experience to grade the classification results. The final grading shows that our algorithm performs well in certain grouping of classification with significant features.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_167
id ecaade2021_167
authors Zhu, Zhelun, Coraglia, Ugo Maria, Simeone, Davide and Fioravanti, Antonio
year 2021
title Spaces Identity Evaluation aNd Assignment - SIENA - A duck typing approach for automatic recognition and semantic enrichment of architectural spaces
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 341-350
doi https://doi.org/10.52842/conf.ecaade.2021.2.341
summary This paper presents the development of SIENA - Space Identity Evaluation aNd Assignment - based on duck typing for automatic recognition and semantic enrichment of the architectural spaces. This method is known in computer science as a form of abductive reasoning and leverages on the observable features of an object in order to establish its recognition. As result, the spatial identity is object-oriented and can be dynamically defined. In this research, the duck typing approach has been achieved with the support of BIM methodology and graph database. The former allows information-based modeling of an architectural project while the latter makes possible the representation of the knowledge along with their relationships. Consequently, this research may have many possible applications, especially as a valid design support tool in the very first design stages. Furthermore, an efficient spatial identity detection could contribute to the development of further human-machine interactions and therefore a possible optimization of the design process.
keywords Semantics; Graph database; Duck typing; Space identification
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2021_235
id ecaade2021_235
authors Ziegler, Christoph, Bielski, Jessica and Langenhan, Christoph
year 2021
title This Is How We Do It - Observing architects sketch to inform effective recognition of semantic building information
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 393-402
doi https://doi.org/10.52842/conf.ecaade.2021.1.393
summary Sketching is an effective means for architects to develop design thoughts and to communicate ideas. It is a promising method for an interaction with CAAD systems that integrates naturally in the process of early conceptual design. A challenge for the realisation of sketched-based interaction, is for the computer to recognise what the designer is drawing. To inform the development of effective methods for the recognition of semantic building information in schematic layout sketches, we seek for a better understanding of how designers encode this information in their sketches. We therefore piloted a remote user study with trained architects (n=7). The results show variance in the use of symbols and in the drawing technique. However, we also observe commonalities in the approach. Participants always draw the perimeter first and then subdivide the enclosed space. We identified three techniques for subdivision: cut lines, open shapes, closed shapes. Also we identified four different types of information in participants' sketches and observed that certain types of objects are prevalent in all sketches. We discuss consequences of our observations for sketch recognition systems and considerations for the design of a follow-up study.
keywords sketching; sketch-based interaction; user study; recognition; semantic building information; BIM
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
doi https://doi.org/10.52842/conf.caadria.2021.1.743
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
doi https://doi.org/10.52842/conf.acadia.2021.328
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2021_361
id sigradi2021_361
authors Almeida, Julio, Bevilaqua, Diogo, Piaia, Luana and Secchi, Carla
year 2021
title TEC-House: Itinerant Modular Space Based on Digital Fabrication
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1499–1510
summary The academy aims to understand and insert digital technologies in the collaborative, interdisciplinary and innovative process. Thus, the process of this project aims to develop an itinerant space that enables integration between academics and the community, associated with digital technologies, making it essential as a precursor of knowledge, innovation and social well-being. Based on concepts from Smart City and Smart Campus, as it addresses a phenomenon of development intrinsic to technological processes in pursuit of environmental quality, it appropriates of digital manufacturing tools as a programmatic production model. Inspired by the generation of physical objects from digital models along the lines of Wikihouse, a modular architectural executive method was developed as an alternative for flexibility and movement. At the end of the process, there is the conception of the TEC-House, idealized as an itinerant modular space, based on anthropometric parameters where function determines the way they integrate, constituting modifying places.
keywords TEC-House, Digital Manufacturing, Modular, Itinerant Space, Innovation
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_216
id caadria2021_216
authors Aman, Jayedi, Tabassum, Nusrat, Hopfenblatt, James, Kim, Jong Bum and Haque, MD Obidul
year 2021
title Optimizing container housing units for informal settlements - A parametric simulation & visualization workflow for architectural resilience
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 51-60
doi https://doi.org/10.52842/conf.caadria.2021.1.051
summary In rapidly growing cities like Dhaka, Bangladesh, sustainable housing in urban wetlands and slums present a challenge to more affordable and livable cities. The Container Housing System (CHS) is among the latest methods of affordable, modular housing quickly gaining acceptance among local stakeholders in Bangladesh. Even though container houses made of heat-conducting materials significantly impact overall energy consumption, there is little research on the overall environmental impact of CHS. Therefore, this study aims to investigate the performance of CHS in the climatic context of the Korail slum in Dhaka. The paper proposes a building envelope optimization and visualization workflow utilizing parametric cluster simulation modeling, multi-objective optimization (MOO) algorithms, and virtual reality (VR) as an immersive visualization technique. First, local housing and courtyard patterns were used to develop hypothetical housing clusters. Next, the CHS design variables were chosen to conduct the MOO analysis to measure Useful Daylight Illuminance and Energy Use Intensity. Finally, the prototype was integrated into a parametric VR environment to enable local stakeholders to walk through the clusters with the goal of generating feedback. This study shows that the proposed method can be implemented by architects and planners in the early design process to help improve the stakeholders understanding of CHS and its impact on the environment. It further elaborates on the implementation results, challenges, limitations of the parametric framework, and future work needed.
keywords Multi-objective Optimization; Building Energy Use; CHS; Informal Settlements; Parametric VR
series CAADRIA
email
last changed 2022/06/07 07:54

_id cdrf2021_231
id cdrf2021_231
authors Andrea Macruz, Ernesto Bueno, Gustavo G. Palma, Jaime Vega, Ricardo A. Palmieri, and Tan Chen Wu
year 2021
title Measuring Human Perception of Biophilically-Driven Design with Facial Micro-expressions Analysis and EEG Biosensor
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_22
summary This paper investigates the role technology and neuroscience play in aiding the design process and making meaningful connections between people and nature. Using two workshops as a vehicle, the team introduced advanced technologies and Quantified Self practices that allowed people to use neural data and pattern recognition as feedback for the design process. The objective is to find clues to natural elements of human perception that can inform the design to meet goals for well-being. A pattern network of geometric shapes that achieve a higher level of monitored meditation levels and point toward a positive emotional valence is proposed. By referencing biological forms found in nature, the workshops utilized an algorithmic process that explored how nature can influence architecture. To measure the impact, the team used FaceOSC for capture and an Artificial Neural Network for micro-expression recognition, and a MindWave sensor manufactured by NeuroSky, which documented the human response further. The methodology allowed us to establish a boundary logic, ranking geometric shapes that suggested positive emotions and a higher level of monitored meditation levels. The results pointed us to a deeper level of understanding relative to geometric shapes in design. They indicate a new way to predict how well-being factors can clarify and rationalize a more intuitive design process inspired by nature.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia21_258
id acadia21_258
authors Augustynowicz, Edyta; Smigielska, Maria; Nikles, Daniel; Wehrle, Thomas; Wagner, Heinz
year 2021
title Parametric design and multirobotic fabrication of wood facades
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 258-269.
doi https://doi.org/10.52842/conf.acadia.2021.258
summary The paper describes the findings of the applied research project by Institute Integrative Design (currently ICDP) HGK FHNW and ERNE AG Holzbau to design and manufacture prefabricated wooden façades in the collaborative design manner between architects and industry. As such, it is an attempt to respond to the current interdisciplinary split in the construction, which blocks innovation and promotes standardized inefficient building solutions. Within this project, we apply three innovations in the industrial setup that result in the integrated design-to-production process of individualized, cost-efficient and well-crafted façades. The collaborative design approach is a method in which architect, engineer and manufacturer start exchange on the early stage of the project during the collaborative design workshops. Digital design and fabrication tools enable architects to generate a large scope of façade variations within production feasibility of the manufacturer and engineers to prepare files for robotic production. Novel multi-robot fabrication processes, developed with the industrial partner, allows for complex façade assembly. This paper introduces the concept of digital craftsmanship, manifested in a mixed fabrication system, which intelligently combines automated and manual production to obtain economic feasibility and highest aesthetic quality. Finally, we describe the design and fabrication of the project demonstrator consisting of four intricate façades on a modular office building, inspired by local traditional solutions, which validate the developed methods and highlight the architectural potential of the presented approach.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_368
id cdrf2021_368
authors B. Bala Murali Kumar, Yun Chung Hsueh, Zhuoyang Xin, and Dan Luo
year 2021
title Process and Evaluation of Automated Robotic Fabrication System for In-Situ Structure Confinement
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_34
summary The additive manufacturing process is gaining momentum in the construction industry with the rapid progression of large-scale 3D printed technologies. An established method of increasing the structural performance of concrete is by wrapping it with Fibre Reinforced Polymer (FRP). This paper proposes a novel additive process to fabricate a FRP formwork by dynamic layer winding of the FRP fabric with epoxy resin paired with an industrial scale robotic arm. A range of prototypes were fabricated to explore and study the fabrication parameters. Based on the systemic exploration, the limitations, the scope, and the feasibility of the proposed additive manufacturing method is studied for large scale customisable structural formworks.
series cdrf
email
last changed 2022/09/29 07:53

_id sigradi2021_191
id sigradi2021_191
authors Barreto, Joao, Silveira, José and Leite, Raquel Magalhaes
year 2021
title Parametric Design in Building Reconfiguration: An Application Towards Environmental Quality
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1435–1446
summary This paper introduces an application study that analyzes environmental variables in existing buildings, focusing on the area of thermal and luminous quality. The object of study is an academic office building, where adaptability emerges as a pivotal feature to provide environmental quality to the occupants. The analysis methodology was based on the use of parametric simulations that allow to explore different scenarios and solutions, in addition, an on-site measurement was carried out for a better understanding of the object of study. In this research, the potential of parametric technologies is analyzed as an auxiliary tool in design decisions, which seeks to explore possibilities, rearranging variables to reach better environmental solutions.
keywords Simulaçoes Paramétricas, Desempenho térmico, Sustentabilidade, Reconfiguraçao
series SIGraDi
email
last changed 2022/05/23 12:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_642512 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002