CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 614

_id sigradi2021_205
id sigradi2021_205
authors Vaez Afshar, Sepehr, Aytaç, Gülºen and Eshaghi, Sarvin
year 2021
title SU: A Serious Game for Water Management - Based on Istanbul
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 523–532
summary With the increasing population growth of human beings, the world is being threatened by the water scarcity problem, causing insecurity in water accessibility. Therefore, a deliberated water management gains fatal importance. In addition, the awareness of the issue through education, specifically in the early ages, plays a crucial role in this path. This research considers the water issue of Istanbul in its content. However, regarding the target audience, which is the kids, it uses a novel approach to tackle the problem. The paper proposes a visually enriched and nonlinear, serious game for the children to teach them about the importance of water and its impact on the planet, specific to Istanbul. The game is inspired by National Geographic Turkey's documentary named 25 Liters: In Pursuit of Water, asking the players to survive in a drought situation in the future. It aims to change the kid's lifestyle to revive the country's in-danger future.
keywords Serious Games, Water Management, Virtual Water, Drought
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_263
id ecaade2021_263
authors Azadi, Shervin and Nourian, Pirouz
year 2021
title GoDesign - A modular generative design framework for mass-customization and optimization in architectural design
doi https://doi.org/10.52842/conf.ecaade.2021.1.285
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 285-294
summary We present a modular generative design framework for design processes in the built environment that provides for the unification of participatory design and optimization to achieve mass-customization and evidence-based design. The paper articulates this framework mathematically as three meta procedures framing the typical design problems as multi-dimensional, multi-criteria, multi-actor, and multi-value decision-making problems: 1) space-planning, 2) configuring, and 3) shaping; structured as to the abstraction hierarchy of the chain of decisions in design processes. These formulations allow for applying various problem-solving approaches ranging from mathematical derivation & artificial intelligence to gamified play & score mechanisms and grammatical exploration. The paper presents a general schema of the framework; elaborates on the mathematical formulation of its meta procedures; presents a spectrum of approaches for navigating solution spaces; discusses the specifics of spatial simulations for ex-ante evaluation of design alternatives. The ultimate contribution of this paper is laying the foundation of comprehensive Spatial Decision Support Systems (SDSS) for built environment design processes.
keywords Generative Design; Spatial Configuration; Serious Gaming; Mass Customization; Decision Problems
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_074
id ascaad2021_074
authors Belkaid, Alia; Abdelkader Ben Saci, Ines Hassoumi
year 2021
title Human-Computer Interaction for Urban Rules Optimization
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 603-613
summary Faced with the complexity of manual and intuitive management of urban rules in architectural and urban design, this paper offers a collaborative and digital human-computer approach. It aims to have an Authorized Bounding Volume (ABV) which uses the best target values of urban rules. It is a distributed constraint optimization problem. The ABV Generative Model uses multi-agent systems. It offers an intelligent system of urban morphology able to transform the urban rules, on a given plot, into a morphological delimitation permitted by the planning regulations of a city. The overall functioning of this system is based on two approaches: construction and supervision. The first is conducted entirely by the machine and the second requires the intervention of the designer to collaborate with the machine. The morphological translation of urban rules is sometimes contradictory and may require additional external relevance to urban rules. Designer arbitration assists the artificial intelligence in accomplishing this task and solving the problem. The Human-Computer collaboration is achieved at the appropriate time and relies on the degree of constraint satisfaction with fitness function. The resolution of the distributed constraint optimization problem is not limited to an automatic generation of urban rules, but involves also the production of multiple optimal-ABV conditioned both by urban constraints as well as relevance, chosen by the designer.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ijac202119312
id ijac202119312
authors Chen, Chen; Chacón Vega, Ricardo Jose; Kong, Tiong Lee
year 2021
title Using genetic algorithm to automate the generation of an open-plan office layout
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 449–465
summary Today, the concept of open plan is more and more widely accepted that many companies have switched to open-plan offices. Their design is an issue in the scope of space layout planning. Although there are many professional architectural layout design software in the market, in the real life, office designers seldom use these tools because their license fees are usually expensive and using them to solve an open-plan office design is like using an overly powerful and expensive tool to fix a minor problem. Therefore, manual drafting through a trial and error process is most often used. This article attempts to propose a lightweight tool to automate open-plan office layout generation using a nested genetic algorithm optimization with two layers, where the inner layer algorithm is embedded in the outer one. The result is enhanced by a local search. The main objective is to maximize space utilization by maximizing the size of the open workspace. This approach is different from its precedents, in that the location search is conducted on a grid map rather than several pre-selected candidate locations. Consequently, the generated layout design presents a less rigid workstation arrangement, inviting a casual and unrestrictive work environment. The real potential of the approach is reflected in the productivity of test fits. Automating and simplifying the generation of layouts for test fits can tremendously decrease the amount of time and resources required to generate them. The experimental case study shows that the developed approach is powerful and effective, making it a totally automated process.
keywords Automated process, office design, genetic algorithm, open-plan office, space layout planning
series journal
email
last changed 2024/04/17 14:29

_id sigradi2021_53
id sigradi2021_53
authors Chen, Yao, Lo, Tiantian, Guo, Xiangmin and Wang, Xiangming
year 2021
title Interactive Virtual Sand Table: An Improved Alternative Participatory Design Tool for Architectural Design
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 67–78
summary With the planning reform in China, public participation is becoming increasingly crucial to the success of rural planning. However, it is difficult to involve various stakeholders in planning and design projects, mainly due to insufficient planning knowledge and computer skills. Therefore, this paper introduces the Interactive Virtual Sand Table (IVST) as a participatory design tool so that non-professional users can use it conveniently and promote interactive and efficient collaborative design discussion. The IVST based participatory tool was applied in Xidong Village, Chaozhou City, Guangdong Province, China. The results show that IVST interaction is more natural and reduces non-professional users' difficulty participating in the design. Participants' ability to participate was highly enhanced, and their interest in IVST visualization was highly activated. In conclusion, the Interactive Virtual Sand Table highly supports the participatory village planning process and may apply to other areas and domains.
keywords Mixed reality, Participatory design, Architectural design, Interactive Virtual Sand Table
series SIGraDi
email
last changed 2022/05/23 12:10

_id caadria2021_266
id caadria2021_266
authors Chen, Yao, Lo, Tiantian, Guo, Xiangmin, Du, Ruijie and Hu, Xinchuang
year 2021
title Interactive Virtual Sand Table - A theoretical review on its application towards Urban Planning
doi https://doi.org/10.52842/conf.caadria.2021.2.629
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 629-638
summary The sand table is a tool of expression of urban planning.With the development of computer science and technology,virtual reality technology is playing an important role in many aspects of urban planning and design,as well as,the virtual sand table.This article analyzes the limitations of the current urban planning sand table from designers and other participants perspectives. It analyses the advantages of applying interactive technology in a sand table for urban planning and proposes using such interactive technology in the future. This paper will also investigate three aspects of interactions: human-computer interaction technology, collaborative interaction technology, remote visual interaction technology. The application of interactive technology on the virtual sand table, on the one hand, can carry out a multi-angle forward-looking analysis of the problems of urban construction and improve the efficiency of planning and approval, and development; on the other hand, it can increase public participation in urban planning and design.
keywords interactive technology; urban planning; urban planning sand table; electronic sand table
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2021_124
id ascaad2021_124
authors Eshaghi, Sarvin; Sepehr Afshar, Güzden Varinlioglu
year 2021
title The Sericum Via: A Serious Game for Preserving Tangible and Intangible Heritage of Iran
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 306-316
summary Efforts to preserve cultural heritage have continued throughout history, and currently use game technology. Serious games, with their audio-visual features make it possible for players to absorb and retain the often rather arid data of heritage. Furthermore, such technology facilitates the transmission of heritage globally amongst remote people, without the need to commute personally. Exploring the literature, we noted a lack of local game culture in Iran, and in the Middle East more broadly. This region is limited in terms of the existing global game industry, and the introduction of its culture to the world depends on the global market. This ascertains the paper's research problem: the need for more local games in the field to promote local historical culture. Hence, the paper aims to preserve and disseminate the tangible and intangible cultural heritage of its focus area, Iran’s Silk Roads and its caravanserais, by developing and testing a serious game named The Sericum Via. It has a non-linear narrative, engaging the player in a long journey visiting the Safavid caravanserais on the Silk Roads, using their detailed information. The game's text-based and strategic environment demands decision-making skills throughout the game and is challenging enough to make the player revisit the game frequently.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_085
id caadria2021_085
authors Förster, Nick, Bratoev, Ivan, Fellner, Jakob, Schubert, Gerhard and Petzold, Frank
year 2021
title Designing Crowd Safety - Agent-Based Pedestrian Simulations in the Early,Collaborative Design Stages
doi https://doi.org/10.52842/conf.caadria.2021.2.729
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 729-738
summary Contemporary agent-based pedestrian simulations offer great potential to evaluate architectural and urban design proposals in terms of medical risks, crowd safety, and visitor comfort. Nevertheless, due to their relative computational heaviness and complicated input-parameters, pedestrian simulations are not employed during the design process commonly. Simulation results significantly impact planning decisions, especially when they are already available in the early design phases. This paper analyzes the requirements of pedestrian simulations for early planning stages, such as seamless integration into iterative and collaborative design processes, interactivity, and appropriate visualization of results. For this purpose, we combine two existing projects: a high-accuracy pedestrian simulation and the CDP//Collaborative Design Platform. To adapt the simulation method to the requirements of early planning stages, we investigate interactions that blend intuitively with the design process and enable multiple users to interact simultaneously. We simplify simulations input parameters to match the level of detail of the early design phases. The simulation model is adapted to facilitate continuous and spontaneous interactions. Furthermore, we develop visualization techniques to support initial design negotiations and present strategies for compensating computation time and giving constant feedback to a dynamic design process.
keywords Pedestrian Simulation; Agent-Based Simulation; Early Design Stages; Collaborative Design; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia21_212
id acadia21_212
authors Gillespie, David; Qin, Zehao; Aish, Francis
year 2021
title An Extended Reality Collaborative Design System
doi https://doi.org/10.52842/conf.acadia.2021.212
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 212-221.
summary This paper presents a new system that enables an eXtended Reality (XR) collaborative design review process, by augmenting an existing physical mockup or environment with virtual models at 1:1 scale in-situ. By using this new hybrid approach, existing context can be extended with minimal or no base physical structure through a simulated VR/AR environment to facilitate stakeholder design collaboration in a manner that was previously either cost prohibitive or technically unfeasible. Through combining real and virtual in this way, the sense of realism can be enhanced, increasing engagement and participation in the design process. An approach to apply AR/VR to uncontrolled environments is described, allowing it to overcome challenges such as tracking and mapping, and allowing users to walk around freely in-situ.

Two examples are presented where the system has been used in live project environments, one as a design tool for client review and engagement, and the other as part of a public planning process.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_274
id caadria2021_274
authors Kawai, Yasuo
year 2021
title Urban Space Simulation System for Townscape Ordinance
doi https://doi.org/10.52842/conf.caadria.2021.2.479
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 479-488
summary In this study, a game engine-based urban space simulation system for townscape ordinance was developed and evaluated. For accurate evaluation of a townscape, it is important for the townscape simulation to be as close to reality as possible from various perspectives. The proposed system employs a freely moving first-person viewpoint with different height and origin variations; the building height and exterior wall color can also be changed. To evaluate the system, the simulation and photographic images were compared. The photographic images exhibited a higher gaze rate on spatial components; high gaze rates were also observed for vehicle and pedestrian in the photographic images. Therefore, we recreated dynamic spatial components such as vehicles and pedestrians. Additionally, we successfully reproduced the night townscape via a switchable light source and enabled the control of the numbers of poles and signs. The townscape reproduced by the proposed system could contribute to townscape planning. In the future, a more versatile urban space simulation system that combines various sources of urban information can be developed.
keywords Landscape Simulation; Game Engine; Urban Planning; Gaze Elements; Sequence
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2021_276
id caadria2021_276
authors Kawai, Yasuo
year 2021
title Development of a Tsunami Evacuation Behavior Simulation System for Selection of Evacuation Sites
doi https://doi.org/10.52842/conf.caadria.2021.2.499
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 499-508
summary In this study, a tsunami evacuation simulation system was developed using a game engine and open data to reflect the conditions of a local emergency situation at low cost. Chigasaki City, which is a heavily populated urban area and tourist destination along the coast of Japan, was selected as the target area for this study. A total of 20 simulations were conducted using 20,000 evacuation agents categorized as child, adult, or elderly residents or visitors randomly placed on the road surface in the target area. The simulation results indicate that a 10.60% agent damage rate may occur for a tsunami of height 10 m. In lowland areas where the river flows inland, tsunamis were observed to move up the estuary, trapping agents between the river and the coast. In such inland areas, several areas with no tsunami evacuation buildings were observed. Thus, the low-cost simulations provided by the proposed system can provide necessary support for planning and designating appropriate tsunami evacuation buildings in disaster-prone areas.
keywords Tsunami; Evacuation ; Agent; Simulation; Game Engine
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2021_439
id caadria2021_439
authors Shi, Zhongming, Herthogs, Pieter, Li, Shiying, Chadzynski, Arkadiusz, Lim, Mei Qi, von Richthofen, Aurel, Cairns, Stephen and Kraft, Markus
year 2021
title Land Use Type Allocation Informed by Urban Energy Performance: A Use Case for a Semantic-Web Approach to Master Planning - A USE CASE FOR A SEMANTIC-WEB APPROACH TO MASTER PLANNING
doi https://doi.org/10.52842/conf.caadria.2021.2.679
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 679-688
summary Cities are growing fast and facing unprecedented challenges as urban populations grow and resources are becoming scarce. A citys master planning involves a series of decision-making processes and requires knowledge from various domains. Urban planners are seeking computational support. We present a use case of land use type or building function allocations informed by urban energy performance as a pilot demonstrator for a semantic-web approach to these challenges. The software used for energy performance assessment was the City Energy Analyst. Using a quarter in downtown Singapore as an example, the results indicated 70% to 80% residential supplemented by other land use types favours efficient use of district cooling systems and photovoltaic panels. Urban planners may use the results to narrow down the search space of land use type ratios for the selected mixed-use area in Singapore. The use case serves as a pilot demonstrator for a broader research scope, the project Cities Knowledge Graph. To support master planning, the project aims to build an extendable plat-form to integrate more datasets and evaluation software for various urban qualities and domains.
keywords Urban planning; knowledge graph; City Energy Analyst; simulation; energy-driven urban design; urban form
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2021_139
id cdrf2021_139
authors Shicong Cao1 and Hao Zheng
year 2021
title A POI-Based Machine Learning Method for Predicting Residents’ Health Status
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_13
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Health environment is a key factor in public health. Since people’s health depends largely on their lifestyle, the built environment which supports a healthy living style is becoming more important. With the right urban planning decisions, it’s possible to encourage healthier living and save healthcare expenditures for the society. However, there is not yet a quantitative relationship established between urban planning decisions and the health status of the residents. With the abundance of data and computing resources, this research aims to explore this relationship with a machine learning method. The data source is from both the OpenStreetMap and American Center for Decease Control and Prevention (CDC). By modeling the Point of Interest data and the geographic distribution of health-related outcome, the research explores the key factors in urban planning that could influence the health status of the residents quantitatively. It informs how to create a built environment that supports health and opens up possibilities for other data-driven methods in this field.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_006
id caadria2021_006
authors Agirachman, Fauzan Alfi and Shinozaki, Michihiko
year 2021
title VRDR - An Attempt to Evaluate BIM-based Design Studio Outcome Through Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2021.2.223
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 223-232
summary During the COVID-19 pandemic situation, educational institutions were forced to conduct all academic activities in distance learning formats, including the architecture program. This act barred interaction between students and supervisors only through their computers screen. Therefore, in this study, we explored an opportunity to utilize virtual reality (VR) technology to help students understand and evaluate design outcomes from an architectural design studio course in a virtual environment setting. The design evaluation process is focused on building affordance and user accessibility aspect based on the design objectives that students must achieve. As a result, we developed a game-engine based VR system called VRDR for evaluating design studio outcomes modeled as Building Information Modeling (BIM) models.
keywords virtual reality; building information modeling; building affordance; user accessibility; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2021_071
id ascaad2021_071
authors Al Maani, Duaa; Saba Alnusairat, Amer Al-Jokhadar
year 2021
title Transforming Learning for Architecture: Online Design Studio as New Norm for Crises Adaptation Under COVID-19
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 129-141
summary For students, studying architecture necessitates a fundamental shift in learning mode and attitude in the transition from school. Beginner students are often surprised by the new mode of learning-by-doing and the new learner identity that they must adopt and adapt to in the design studio. Moreover, due to the COVID-19 pandemic, architecture teaching has moved online. Both instructors and students are experiencing dramatic changes in their modes of teaching and learning due to the sudden move from on-campus design studios to a virtual alternative, with only the bare minimum of resources and relevant experience. This study explored the virtual design studio as a transformative learning model for disaster and resilience context, including the factors that affect foundation students’ perceptions and experiences of the quality of this adaptation. Data obtained from 248 students who took online design studios during the lockdown in 15 universities in Jordan highlight many factors that make the experience of the online design studio more challenging. Despite these challenges, strongly positive aspects of the online studio were evident and widely discussed. A model of hyper-flexible design studio in which students can have a direct contact with their instructors when needed – in addition to online activities, reviews, and written feedback – is highly recommended for the beginner years. This HyFlex model will enrich students’ learning and understanding of the fundamentals of design and ensure that technology solutions deliver significant and sustainable benefits.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_361
id sigradi2021_361
authors Almeida, Julio, Bevilaqua, Diogo, Piaia, Luana and Secchi, Carla
year 2021
title TEC-House: Itinerant Modular Space Based on Digital Fabrication
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1499–1510
summary The academy aims to understand and insert digital technologies in the collaborative, interdisciplinary and innovative process. Thus, the process of this project aims to develop an itinerant space that enables integration between academics and the community, associated with digital technologies, making it essential as a precursor of knowledge, innovation and social well-being. Based on concepts from Smart City and Smart Campus, as it addresses a phenomenon of development intrinsic to technological processes in pursuit of environmental quality, it appropriates of digital manufacturing tools as a programmatic production model. Inspired by the generation of physical objects from digital models along the lines of Wikihouse, a modular architectural executive method was developed as an alternative for flexibility and movement. At the end of the process, there is the conception of the TEC-House, idealized as an itinerant modular space, based on anthropometric parameters where function determines the way they integrate, constituting modifying places.
keywords TEC-House, Digital Manufacturing, Modular, Itinerant Space, Innovation
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_399
id caadria2021_399
authors Alsalman, Osama, Erhan, Halil, Haas, Alyssa, Abuzuraiq, Ahmed M. and Zarei, Maryam
year 2021
title Design Analytics and Data-Driven Collaboration in Evaluating Alternatives
doi https://doi.org/10.52842/conf.caadria.2021.2.101
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 101-110
summary Evaluation of design ideas is an important task throughout the life cycle of design development in the AEC industry. It involves multiple stakeholders with diverse backgrounds and interests. However, there is limited computational support which through this collaboration is facilitated, in particular for projects that are complex. Current systems are either highly specialized for designers or configured for a particular purpose or design workflow overlooking other stakeholders' needs. We present our approach to motivating participatory and collaborative design decision-making on alternative solutions as early as possible in the design process. The main principle motivating our approach is giving the stakeholders the control over customizing the data presentation interfaces. We introduce our prototype system D-ART as a collection of customizable web interfaces supporting design data form and performance presentation, feedback input, design solutions comparisons, and feedback compiling and presentation. Finally, we started the evaluation of these interfaces through an expert evaluation process which generally reported positive results. Although the results are not conclusive, they hint towards the need for presenting and compiling feedback back to the designers which will be the main point of our future work.
keywords Design Analytics; Collaboration; Visualizations
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2021_146
id ascaad2021_146
authors Aly, Zeyad; Aly Ibrahim, Sherif Abdelmohsen
year 2021
title Augmenting Passive Actuation of Hygromorphic Skins in Desert Climates: Learning from Thorny Devil Lizard Skins
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 264-278
summary The exploitation of latent properties of natural materials such as wood in the passive actuation of adaptive building skins is of growing interest due to their added value as a low-cost and low-energy approach. The control of wood response behavior is typically conducted via physical experiments and numerical simulations that explore the impact of hygroscopic design parameters. Desert climates however suffer from water scarcity and high temperatures. Complementary mechanisms are needed to provide sufficient sources of water for effective hygroscopic operation. This paper aims to exploit such mechanisms, with specific focus on thorny devil lizard skins whose microstructure surface properties allow for maximum humidity absorption. We put forward that this process enhances hygroscopic-based passive actuation systems and their adaptation to both humidity and temperature in desert climates. Specific parameters and rules are deduced based on the lizard skin properties. Physical experiments are conducted to observe different actuation mechanisms. These mechanisms are recorded, and texture and bending morphologies are modeled for adaptive skins using Grasshopper.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia21_238
id acadia21_238
authors Anifowose, Hassan; Yan, Wei; Dixit, Manish
year 2021
title BIM LOD + Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2021.238
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 238-245.
summary Architectural Education faces limitations due to its tactile approach to learning in classrooms with only 2-D and 3-D tools. At a higher level, virtual reality provides a potential for delivering more information to individuals undergoing design learning. This paper investigates a hypothesis establishing grounds towards a new research in Building Information Modeling (BIM) and Virtual Reality (VR). The hypothesis is projected to determine best practices for content creation and tactile object virtual interaction, which potentially can improve learning in architectural & construction education with a less costly approach and ease of access to well-known buildings. We explored this hypothesis in a step-by-step game design demonstration in VR, by showcasing the exploration of the Farnsworth House and reproducing assemblage of the same with different game levels of difficulty which correspond with varying BIM levels of development (LODs). The game design prototype equally provides an entry way and learning style for users with or without a formal architectural or construction education seeking to understand design tectonics within diverse or cross-disciplinary study cases. This paper shows that developing geometric abstract concepts of design pedagogy, using varying LODs for game content and levels, while utilizing newly developed features such as snap-to-grid, snap-to-position and snap-to-angle to improve user engagement during assemblage may provide deeper learning objectives for architectural precedent study.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_233
id caadria2021_233
authors Ascoli, Raphaël
year 2021
title Augmenting computational design agency in emerging economies
doi https://doi.org/10.52842/conf.caadria.2021.2.639
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 639-648
summary This /practice-based design research/ investigates the possibility of computational design to increase agency and impact in emerging economies through real-world projects. By cultivating a new kind of relationship to issues in development and local untapped resources, they inspire for more public engagement and resource-based conversations within a spatial framework. The topics that were addressed in this research are the democratization of data and affordability of construction. These two on-going early-stage initiatives have used computational design tools at specific areas in the projects development, therefore optimizing the parts where low-tech tools werent sufficient. This demand driven design process explores ways in which different levels of technology can augment each other.
keywords space; resource; housing; myanmar; optimization
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_351450 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002