CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 611
Reformat results as: short short into frame detailed detailed into frame
Design and fabrication methods build upon previous research on lightweight fiber structures conducted at the University of Stuttgart and expand it towards inhabitable, multi-story building systems. Interdisciplinary design collaboration based on reciprocal computational feedback allows for the concurrent consideration of architectural, structural, fabrication and material constraints. The robotic coreless filament winding process only uses minimal, modular formwork and allows for the efficient production of morphologically differentiated building components.
The research results were demonstrated through Maison Fibre, developed for the 17th Architecture Biennale in Venice. Situated at the Venice Arsenale, the installation is composed of 30 plate like elements and depicts a modular, further extensible scheme. While this first implementation of a hybrid multi-story building system relies on established glass and carbon fiber composites, the methods can be extended towards a wider range of materials ranging from ultra-high-performance mineral fiber systems to renewable natural fibers.
In proposing a digital machine-material system, the presented research argues for the development of design, fabrication, and robotics strategies wherein hardware, geometry, material, and software are developed in parallel in an interdependent co-design process. Such approach of considering parameters across the spectrum of design tasks allows to develop systems that are well suited for their specified application while maintaining minimum complexity and increasing accessibility of fabrication systems.
This research demonstrates a shift from an approach of absolute control and predictability to behavior-based methods of assembly. With this, materials and processes that are often considered too labor-intensive or unpredictable can be reintroduced. This reintroduction leads to new insights in architectural design and construction, where design outcome is uniquely tied to the building material and its assembly logic. This highly material-driven approach sets the stage for developing an effective, sustainable, light-touch method of building using natural materials.
For more results click below: