CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2024_361
id ecaade2024_361
authors Sochùrková, Petra; Devyatkina, Svetlana; Kordová, Sára; Vaško, Imrich; Tsikoliya, Shota
year 2024
title Bioreceptive Parameters for Additive Manufacturing of Clay based Composites
doi https://doi.org/10.52842/conf.ecaade.2024.1.045
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 45–54
summary Due to climate change and the problematic amount of waste and CO2 emissions in the construction industry, non-human organisms and sustainable solutions are key motivators of the study. This paper focuses on developing a bioreceptive (Guillitte, 1995) composite suitable for additive manufacturing, composed to support growth of various organisms. It investigates key properties which have shown to be beneficial for promoting biological growth, such as water absorption, water permeability, humidity, and surface texture. The study evaluates the effect of two groups of clay-based waste additives, wooden sawdust (Arslan, et al., 2021) and sediment material sourced from local tunnel excavation in Prague. Simultaneously the need for intelligent reintegration and waste use is prevalent. Additive fabrication offers the ability to test a variety of composites and (re-)integrate them into the manufacturing processes. Current approach explores how to design artificial environments/skins for greenery and small life with the potential to improve both diversity and survivability while maintaining a better climate in its immediate surroundings. Bioreceptive design has the potential to improve the quality of the urban environment and bring new aesthetic influences into it (Cruz and Beckett 2016, p. 51-64).
keywords Digital Design, Material Research, Bioreceptive Design, Robotic Fabrication, Additive Manufacturing, Experimental Pastes, Bio compatibility, Waste Materials, Clay Composites
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2021_125
id ecaade2021_125
authors Heidari, Farahbod, Mahdavinejad, Mohammadjavad, Werner, Liss C. and Khayami, Sima
year 2021
title PH Computation to Growth Prediction
doi https://doi.org/10.52842/conf.ecaade.2021.1.095
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 95-104
summary Bacterial cellulose is a bio self-assembled organic material with unique features such as great tensile strength, biodegradability, and renewable potential that has made it worthwhile for different fields of industrial development research. Since the past decade, in the field of architecture also, enormous efforts were done to reach the desired guided shape of bacterial cellulose with optimized structural features. However, all these efforts are in their infancy. To reach the adaptive architectural bio-component, we need something beyond static prototyping. Therefore, we investigate the specific type "Bacterium Glucoacetobacter xylinus(BC)" cellulose growth procedure by syncing the culture medium (cellulose growth environment) to a virtual stimulating environment to introduce the computational architectural design process based on dynamic biological structures. This research presents the smart design process via the syncing of CAD environment and growth environment to create a framework that provides data analysis that the implementation of its outcomes can revolutionize the bio-digital fabrication process.
keywords Bio-fabrication; Bio-based material; Biocomputation; Living Functional Components; Pattern Recognition; AI prediction
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia21_308
id acadia21_308
authors Rossi, Gabriella; Chiujdea, Ruxandra; Colmo, Claudia; El Alami, Chada; Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette
year 2021
title A Material Monitoring Framework
doi https://doi.org/10.52842/conf.acadia.2021.308
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 308-317.
summary Through 3d printing, cellulose-based biopolymers undergo a two-staged hybrid fabrication process, where initial rapid forming is followed by a slower secondary stage of curing. During this curing large quantities of water are evaporated from the material which results in anisotropic deformations. In order to harness the potential of 3d printing biopolymers for architectural applications, it is necessary to understand this extended timeline of material activity and its implications on critical architectural factors related to overall element shrinkage, positional change of joints, and overall assembly tolerance. This paper presents a flexible multi-modal sensing framework for the understanding of complex material behavior of 3d printed cellulose biopolymers during their transient curing process.

We report on the building of a Sensor Rig, that interfaces multiple aspects of the curing of our cellulose-slurry print experiments, using a mix of image-based, marker-based, and pin-based protocols for data collection. Our method uses timestamps as a common parameter to interface various modes of curing monitoring through multi-dimensional time slices. In this way, we are able to uncover underlying correlations and affects between the different phenomena occuring during curing. We report on the developed data pipelines enabling the Monitoring Framework and its associated software and hardware implementation. Through graphical Exploratory Data Analysis (EDA) of 3 print experiments, we demonstrate that geometry is the main driver for behavior control. This finding is key to future architectural-scale explorations.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_329
id caadria2021_329
authors Breseghello, Luca, Sanin, Sandro and Naboni, Roberto
year 2021
title Toolpath Simulation,Design and Manipulation in Robotic 3D Concrete Printing
doi https://doi.org/10.52842/conf.caadria.2021.1.623
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 623-632
summary Digital fabrication is blurring the boundaries between design, manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic. manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic."
keywords 3D Concrete Printing; Robotic Fabrication; Additive Manufacturing; Toolpath Simulation; Toolpath Manipulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2021_083
id ascaad2021_083
authors El-Dabaa, Rana; Islam Salem, Sherif Abdelmohsen
year 2021
title Digitally Encoded Wood: 4D Printing of Hygroscopic Actuators for Architectural Responsive Skins
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 241-252
summary This paper exploits passive responsive actuators as a passive approach for adaptive façades. The study encodes the embedded hygroscopic parameters of wood through 4D printing of laminated wooden composites as a responsive wooden actuator. Several experiments focus on controlling the printed hygroscopic parameters based on the effect of 3D printing patterns and infill height on the wooden angle of curvature. We present a set of controlled printed hygroscopic parameters that stretch the limits in controlling the response of wood to humidity instead of the typical natural properties of wood. The results show a passive programmed self-actuated mechanism that can enhance responsive façade design with zero energy consumption through utilizing both material science and additive manufacturing mechanisms. This passive responsive mechanism can be utilized in adaptive facades for dynamic shading configurations.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_213
id caadria2021_213
authors Oghazian, Farzaneh and Vazquez, Elena
year 2021
title A Multi-Scale Workflow for Designing with New Materials in Architecture: Case Studies across Materials and Scales - Case studies across materials and scales
doi https://doi.org/10.52842/conf.caadria.2021.1.533
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 533-542
summary In this paper, we present a workflow developed for designing with and scaling-up new materials in architecture through an iterative cycle of materialization and testing. The framework establishes a connection between design requirements and form, taking advantage of different scales in new materials known as micro, meso, and macroscale in the process of design/manufacture. Different scales when dealing with material systems-especially in those that possess some level of uncertainty in their behavior from the formation process-make it challenging to deal with the different material variables controlled at each scale. This paper presents a brief review of existing design workflows centered on material properties. We then discuss case studies and argue for a multi-scale approach for design. Finally, we present the workflow. By implementing the workflow on two case studies, we answer how we can include material scales and their embedded properties as the central part of the design/manufacture process to aid in implementing new materials in architecture. The case studies are a responsive skin system and a free-standing tensile structure incorporating 3D printed wood filament and knitted yarn as the primary material.
keywords material computation; material-based design; wood 3D printing; knitting; multi-scale workflow
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia21_362
id acadia21_362
authors Bruscia, Nicholas
year 2021
title Surface Disclination Topology in Self-Reactive Shell Structures
doi https://doi.org/10.52842/conf.acadia.2021.362
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 362-371.
summary This paper discusses recent developments on the geometric construction and fabrication techniques associated with large-scale surface disclinations. The basic concept of disclinations recognizes the role of “defects” in the composition of materials, the strategic placement of which shapes the material by inducing curvature from initially planar elements. By acknowledging the relationship between geometry and topology that governs disclination based form-finding and material prototyping, this work consciously explores its potential at the architectural scale. Basic geometric figures and their topological transformations are documented in the context of digital modeling and simulation, fabrication, and a specific material palette. Specifically, this work builds on recent efforts by focusing on three particular areas of investigation; a) enhancing the stability of surface disclinations with a synthetic fibrous layer, b) aggregation via periodic tilings, and c) harnessing snap-through buckling to increase bending stiffness in thin surfaces.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_102
id cdrf2021_102
authors Gang Mao
year 2021
title A Study of Bio-Computational Design in Terms of Enhancing Water Absorption by Method of Bionics Within the Architectural Fields
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_10
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary This essay aims to explore an architecture computational design intended to accept and absorb moisture through geometrical and material conditions, and using design strategies, help deliver this moisture upwards through capillary action to areas of cryptogamic growth including mosses and smaller ferns on the surface of architecture. The purpose of this research project is to explore the morphology of general capillary systems based on research into the principle of xylematic structures in trees, thereby creating a range of capillary designs using three types of material: plaster, 3D print plastic, and concrete. In addition, computational studies are used to examine various types of computational designs of organic structures, such as columns, driven by physical and environmental conditions such as sunshine, shade, tides and other biological processes to explore three-dimensional particle-based branching systems that define both structural and water delivery paths.
series cdrf
email
last changed 2022/09/29 07:53

_id ijac202119201
id ijac202119201
authors Gumuskaya, Gizem
year 2021
title Multimaterial bioprinting—minus the printer: Synthetic bacterial patterning with UV-responsive genetic circuits
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 121–141
summary In this paper, we argue that synthetic biology can help us employ living systems’ unique capacity for self-construction and biomaterial production toward developing novel architectural fabrication paradigms, in which both the raw material production and its refinement into a target structure can be merged into a single computational process embedded in the living structure itself. To demonstrate, here we introduce bioPheme, a novel biofabrication method for engineering bacteria to build biomaterial(s) of designer’s choice into arbitrary 2D geometries specified via transient UV tracing. To this end, we present the design, construction, and testing of the enabling synthetic DNA circuit, which, once inserted into a bacterial colony, allows the bacteria to execute spatial computation by interacting with one another based on the if-then rules encoded in this circuit. At the heart of this genetic circuit is a pair of UV sensor – actuator, and a pair of cell-to-cell signal transmitter – receptor modules, created with genes extracted from the virus ? Phage and marine bacterium Vibrio fischeri, respectively. These modules are wired together to help designers engineer bacteria to build macro-scale structures with seamlessly integrated biomaterials, thereby bridge the molecular and architectural scales. In this way, a bacterial lawn can be programmed to produce different objects with complementary biomaterial compositions, such as a biomineralized superstructure and an elastic tissue filling in-between. In summary, this paper focuses on how scientists’ increasing ability to harness the innate computational capacity of living cells can help designers create self-constructing structures for architectural biofabrication. Through the discussions in this paper, we aim to initiate a shift in today’s biodesign practices toward a greater appreciation and adoption of bottom-up governance of living structures. We are confident that such a paradigm shift will allow for more efficient and sustainable biofabrication systems in the 4th industrial revolution and beyond.
keywords Synthetic biology, architecture, optogenetics, design computation, genetic circuits, biofabrication, synthetic morphogenesis, computational fabrication, architectural fabrication, biodesign
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_382
id caadria2021_382
authors Heidari, Farahbod, Saleh Tabari, Mohammad Hassan, Mahdavinejad, Mohammadjavad, Werner, Liss C. and Roohabadi, Maryam
year 2021
title Bio-Energy Management from Micro-Algae Bio-Computational Based Reactor
doi https://doi.org/10.52842/conf.caadria.2021.1.401
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 401-410
summary Microalgae are a sustainable source of unique properties with potential for various applications. Biofuel production has led to the use of them as bioreactors on an architectural scale. Most of these efforts cannot manage the output due to the lack of intelligent control and monitoring over environmental micro-scale growth. This research presents the possibility of control and monitoring over the bio-energy retrieved through micro-organisms in bio-reactors, specifically the growth environments computation. To achieve monitoring, three dimensions of the medium culture captured by cameras, and with the advantage of image processing, the picture frames pixel values measured. In this process, we use the Python OpenCV Library as an image processing reference. Finally, a specifically developed algorithm analyses the calculated 3d-matrix. By changing the environmental parameters, control happens by directly recognizing changes in density and outputs. This researchs computational process has proposed a novel approach for controlling particle-based environments to reach the desired functions of microorganisms, This approach can use in a wide range of cases as a method.
keywords Bio-Computation; Monitoring; Image Processing; Pattern Recognition; Multi-Functional Bio-Materials
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2021_282
id caadria2021_282
authors Jauk, Julian, Vašatko, Hana, Gosch, Lukas, Christian, Ingolf, Klaus, Anita and Stavric, Milena
year 2021
title Digital Fabrication of Growth - Combining digital manufacturing of clay with natural growth of mycelium
doi https://doi.org/10.52842/conf.caadria.2021.1.753
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 753-762
summary In this paper we will demonstrate that a digital workflow and a living material such as mycelium, make the creation of smart structural designs possible. Ceramics industries are not as technically advanced in terms of digital fabrication, as the concrete or steel industries are. At the same time, bio-based materials that use growth as a manufacturing method, are often lacking in basic research. Our interdisciplinary research combines digital manufacturing - allowing a controlled material distribution, with the use of mycelial growth - enabling fibre connections on a microscopic scale. We developed a structure that uses material informed toolpaths for paste-based extrusion, which are built on the foundation of experiments that compare material properties and observations of growth. In this manner the tensile strength of 3D printed unfired clay elements was increased by using mycelium as an intelligently oriented fibre reinforcement. Assembling clay-mycelium composites in a living state allows force-transmitting connections within the structure. The composite named 'MyCera' has exhibited structural properties that open up the possibility of its implementation in the building industry. In this context it allows the design and efficient manufacturing of lightweight ceramic constructions customized to this composite, which would not have been possible using conventional ceramics fabrication methods.
keywords Mycelium; Clay; 3D Printing; Growth; Bio-welding
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia21_58
id acadia21_58
authors Karsan, Zain
year 2021
title TinyZ
doi https://doi.org/10.52842/conf.acadia.2021.058
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 58-67.
summary The circumstances of the pandemic have resulted in the closure of workshops and Fab Labs and put physical making on hold for fabrication-based design courses. However, with digital fabrication having become a crucial component of design education, involving the critical transition from design ideas represented digitally to being realized physically, alternative approaches needed to be found. Remote making can be enabled by the potentials of small-scale modular machines, which due to their low cost, are easily distributable and can be shipped to each student in a design studio. The use of at-home fabrication offers new possibilities for project-adaptive prototyping tools.

Desktop scaled fabrication tools designed to reach a distributed audience abound in industry, academia, and amongst DIY-ers. Drawing from these precedents, a desktop milling machine called the TinyZ was developed to support digital fabrication in an architectural studio held at MIT in the Spring of 2021. The machine was designed to be an easily reconfigurable rapid prototyping tool intended to adapt to evolving design processes.

The TinyZ Kit introduced students to the basics of machine building, electronics, and computer numerically controlled (CNC) programming. The outcome of the studio showed the potential for different home labs to develop specializations and to collaborate by out-sourcing, offering a way for students to work together remotely. Finally, the work of the studio demonstrated that new material processes developed remotely could return to fab labs and extend the capacities of shared maker spaces.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_131
id ecaade2021_131
authors Körner, Andreas
year 2021
title Thermochromic Animation - Thermally-informed and colour-changing surface-configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.453
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 453-462
summary All factors of thermal comfort are invisible to humans and do not (yet) impact visual navigation in the built environment. Thermochromic materials change their colour relative to temperature. In architecture, their applications as responsive ornaments and as intelligent composite systems are discussed. Nonetheless, design research on their use together with computational design is scarce. This study investigates thermochromics concerning architectural surfaces. Design and material experiments were conducted to test the hypothesis that thermochromic animation can be configured to visualise invisible parameters of thermal comfort. Scale prototypes were fabricated from different materials and coated with thermochromics. They varied in layer number and sub-coatings. The colour change was observed with several instruments. Heat transfer simulations of digital doppelgangers accompanied the physical experiments. The results suggest that this method can be used to configure thermochromic animation. This can be implemented into a procedural design model for porous and multi-layered thermochromic surfaces in the future. In this, digital simulation and material-based design are combined in a method that advances the use of thermochromic materials in the context of digital architectural design.
keywords thermochromics; fabrication; simulation; materials; colour
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac202119103
id ijac202119103
authors Liu, Jingyang; Yi-Chin Lee, and Daniel Cardoso Llach
year 2021
title Computational design and fabrication of highly customizable architectural space frames: Making a flat-cut Weaire-Phelan structure
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 37–49
summary This paper documents a computational approach to the design, fabrication, and assembly of customizable space structures built entirely out of flat-cut interlocking elements without the need of nodes, fasteners, cement, or glue. Following a Research by Design (RbD) methodology, we establish a framework comprising geometric and parametric modeling, structural analysis, and digital fabrication stages to examine the following research question: how might the modularity of a construction kit be combined with the plasticity of parametric descriptions to facilitate the design and fabrication of flat-cut space structures? We find that an adaptive joint design that resolves local deformations at the node and element levels can facilitate the construction of flat-cut space structures by making modular components responsive to local geometric, material, and mechanical demands. The research centers on the design and construction of an architecture-scale installation based on the Weaire-Phelan structure—an aperiodic space-filling geometric structure that approximates the geometry of foam—entirely out of flat-cut interlocking elements. Documenting the process in technical detail, as well as some limitations, the paper contributes to recent efforts to develop digital materials suitable for architectural applications. In addition, it contributes to extend the formal and architectural possibilities of flat-cut space structure design by facilitating “bottom-up” design explorations in concert with the structure’s tectonic resolution.
keywords Computational design, generative fabrication, construction kit
series journal
email
last changed 2021/06/03 23:29

_id ecaade2021_284
id ecaade2021_284
authors Luis, Orozco, Krtschil, Anna, Wagner, Hans-Jakob, Simon, Bechert, Amtsberg, Felix, Skoury, Lior, Knippers, Jan and Menges, Achim
year 2021
title Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey Construction
doi https://doi.org/10.52842/conf.ecaade.2021.1.303
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 303-312
summary This paper presents an agent-based method for the design of complex timber structures. This method features a multi-level agent simulation, that relies on a feedback loop between agent systems and structural simulations that update the agent environment. Such an approach can usefully be applied for the design of variable density timber slab systems, where material arrangements based on structural, fabrication, and architectural boundary conditions are necessary. Such arrangements can lead to multi-directional spanning slabs that can accept pointwise supports in unique layouts. We discuss the implementation of such a method on the basis of the structural design of a pavilion-scale multi-storey testing setup. The presented method enables a more versatile approach to the design of multi-storey timber buildings, which should increase their applicability to a diverse range of building typologies.
keywords Agent-Based Modelling; Robotic Timber Construction; Computational Design; Multi-Storey Timber Buildings
series eCAADe
email
last changed 2022/06/07 07:59

_id cdrf2021_305
id cdrf2021_305
authors Mette Ramsgaard Thomsen, Martin Tamke1, Aurelie Mosse, Jakob Sieder-Semlitsch, Hanae Bradshaw, Emil Fabritius Buchwald, and Maria Mosshammer
year 2021
title Imprimer La Lumiere – 3D Printing Bioluminescence for Architectural Materiality
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_28
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary ‘Imprimer la Lumi?re’ examines the making of a bioluminescent micro architecture. The project positions itself inside a sustainability agenda. By exploring the use of light-emitting bacteria as a material for architecture it asks what are the concepts, methods and technologies needed for designing with living materials. The project devises new means by which to design with the luminescent vibrio fischeri bacteria in a 3D printing manufacturing process based on extrusion principles. By combining the study of these living organisms and their appropriation through advanced robot-controlled 3D printing technologies, we establish a conceptual, material and technological framework for a bio-controlled bacteria growth and 3D extrusion process and a printable material based on agarose and gelatine.
series cdrf
email
last changed 2022/09/29 07:53

_id cdrf2021_80
id cdrf2021_80
authors Sara Pezeshk
year 2021
title Bio-Tile: An Intelligent Hybrid-Infrastructure
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_8
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Bio-tile is a multipurpose artifact designed for protecting the coastline from erosion while creating a landscape element and an architectural experience for visitors. Bio-tile performs as a mitigation strategy to slow down erosion while promoting biodiversity. This paper describes the methodology used to develop the bio-tile as the nexus between digital and environmental for resolving coastline challenges through material tectonics. A non-linear algorithm and nature’s inherent code are used to develop the Bio-tile, a nature-based hybrid infrastructure. This approach aims to generate a performance-oriented design by using emergence theory to construct shoreline elements adaptive to climatic conditions.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_615439 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002